Mister Exam

Other calculators

Integral of log2(x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |  /log(x)\    
 |  |------|  dx
 |  \log(2)/    
 |              
/               
0               
$$\int\limits_{0}^{1} \left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{2}\, dx$$
Integral((log(x)/log(2))^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                                   
 |                                                    
 |         2                         2                
 | /log(x)\             2*x     x*log (x)   2*x*log(x)
 | |------|  dx = C + ------- + --------- - ----------
 | \log(2)/              2          2           2     
 |                    log (2)    log (2)     log (2)  
/                                                     
$$\int \left(\frac{\log{\left(x \right)}}{\log{\left(2 \right)}}\right)^{2}\, dx = C + \frac{x \log{\left(x \right)}^{2}}{\log{\left(2 \right)}^{2}} - \frac{2 x \log{\left(x \right)}}{\log{\left(2 \right)}^{2}} + \frac{2 x}{\log{\left(2 \right)}^{2}}$$
The graph
The answer [src]
   2   
-------
   2   
log (2)
$$\frac{2}{\log{\left(2 \right)}^{2}}$$
=
=
   2   
-------
   2   
log (2)
$$\frac{2}{\log{\left(2 \right)}^{2}}$$
2/log(2)^2
Numerical answer [src]
4.16273796201122
4.16273796201122

    Use the examples entering the upper and lower limits of integration.