Mister Exam

Other calculators


log(2*x)/((log(4*x)*x))

Integral of log(2*x)/((log(4*x)*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |   log(2*x)    
 |  ---------- dx
 |  log(4*x)*x   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\log{\left(2 x \right)}}{x \log{\left(4 x \right)}}\, dx$$
Integral(log(2*x)/((log(4*x)*x)), (x, 0, 1))
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
59.6786882263115
59.6786882263115
The graph
Integral of log(2*x)/((log(4*x)*x)) dx

    Use the examples entering the upper and lower limits of integration.