Integral of log(1+1/(n^2)) dn
The solution
The answer (Indefinite)
[src]
/
|
| / 1 \ / 1 \
| log|1 + --| dn = C + 2*atan(n) + n*log|1 + --|
| | 2| | 2|
| \ n / \ n /
|
/
∫log(1+n21)dn=C+nlog(1+n21)+2atan(n)
The graph
−log(2)+2π
=
−log(2)+2π
Use the examples entering the upper and lower limits of integration.