Mister Exam

Other calculators

Integral of log(1+1/(n^2)) dn

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |     /    1 \   
 |  log|1 + --| dn
 |     |     2|   
 |     \    n /   
 |                
/                 
1                 
1log(1+1n2)dn\int\limits_{1}^{\infty} \log{\left(1 + \frac{1}{n^{2}} \right)}\, dn
Integral(log(1 + 1/(n^2)), (n, 1, oo))
The answer (Indefinite) [src]
  /                                              
 |                                               
 |    /    1 \                           /    1 \
 | log|1 + --| dn = C + 2*atan(n) + n*log|1 + --|
 |    |     2|                           |     2|
 |    \    n /                           \    n /
 |                                               
/                                                
log(1+1n2)dn=C+nlog(1+1n2)+2atan(n)\int \log{\left(1 + \frac{1}{n^{2}} \right)}\, dn = C + n \log{\left(1 + \frac{1}{n^{2}} \right)} + 2 \operatorname{atan}{\left(n \right)}
The graph
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.009004
The answer [src]
pi         
-- - log(2)
2          
log(2)+π2- \log{\left(2 \right)} + \frac{\pi}{2}
=
=
pi         
-- - log(2)
2          
log(2)+π2- \log{\left(2 \right)} + \frac{\pi}{2}
pi/2 - log(2)

    Use the examples entering the upper and lower limits of integration.