Integral of lnxdx/(x+1)^2 dx
The solution
The answer (Indefinite)
[src]
/
|
| log(x) / 1\ log(x)
| -------- dx = C - log|1 + -| - ------
| 2 \ x/ 1 + x
| (x + 1)
|
/
∫(x+1)2log(x)dx=C−log(1+x1)−x+1log(x)
The graph
−log(2)
=
−log(2)
Use the examples entering the upper and lower limits of integration.