1 / | | 5 | log (x) dx | / 0
Integral(log(x)^5, (x, 0, 1))
Let .
Then let and substitute :
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
Use integration by parts:
Let and let .
Then .
To find :
The integral of the exponential function is itself.
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 5 5 2 4 3 | log (x) dx = C - 120*x + x*log (x) - 60*x*log (x) - 5*x*log (x) + 20*x*log (x) + 120*x*log(x) | /
Use the examples entering the upper and lower limits of integration.