Mister Exam

Other calculators

Integral of (lnx+2)*lnx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  (log(x) + 2)*log(x) dx
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)}\, dx$$
Integral((log(x) + 2)*log(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Integrate term-by-term:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Use integration by parts:

            Let and let .

            Then .

            To find :

            1. The integral of the exponential function is itself.

            Now evaluate the sub-integral.

          2. The integral of the exponential function is itself.

          So, the result is:

        The result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of a constant is the constant times the variable of integration:

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      The result is:

    Method #3

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Integrate term-by-term:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of a constant is the constant times the variable of integration:

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant is the constant times the variable of integration:

        The result is:

      Now evaluate the sub-integral.

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. Integrate term-by-term:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Use integration by parts:

                Let and let .

                Then .

                To find :

                1. The integral of the exponential function is itself.

                Now evaluate the sub-integral.

              2. The integral of the exponential function is itself.

              So, the result is:

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of the exponential function is itself.

              So, the result is:

            The result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #4

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        2. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of the exponential function is itself.

          Now evaluate the sub-integral.

        3. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of the exponential function is itself.

          So, the result is:

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Use integration by parts:

          Let and let .

          Then .

          To find :

          1. The integral of a constant is the constant times the variable of integration:

          Now evaluate the sub-integral.

        2. The integral of a constant is the constant times the variable of integration:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                   2   
 | (log(x) + 2)*log(x) dx = C + x*log (x)
 |                                       
/                                        
$$\int \left(\log{\left(x \right)} + 2\right) \log{\left(x \right)}\, dx = C + x \log{\left(x \right)}^{2}$$
The graph
The answer [src]
0
$$0$$
=
=
0
$$0$$
0
Numerical answer [src]
-1.41552919787012e-16
-1.41552919787012e-16

    Use the examples entering the upper and lower limits of integration.