Mister Exam

Other calculators

Integral of lnx*x^9 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          9   
 |  log(x)*x  dx
 |              
/               
0               
01x9log(x)dx\int\limits_{0}^{1} x^{9} \log{\left(x \right)}\, dx
Integral(log(x)*x^9, (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(x)u = \log{\left(x \right)}.

      Then let du=dxxdu = \frac{dx}{x} and substitute dudu:

      ue10udu\int u e^{10 u}\, du

      1. Use integration by parts:

        udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

        Let u(u)=uu{\left(u \right)} = u and let dv(u)=e10u\operatorname{dv}{\left(u \right)} = e^{10 u}.

        Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

        To find v(u)v{\left(u \right)}:

        1. There are multiple ways to do this integral.

          Method #1

          1. Let u=10uu = 10 u.

            Then let du=10dudu = 10 du and substitute du10\frac{du}{10}:

            eu100du\int \frac{e^{u}}{100}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              eu10du=eudu10\int \frac{e^{u}}{10}\, du = \frac{\int e^{u}\, du}{10}

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: eu10\frac{e^{u}}{10}

            Now substitute uu back in:

            e10u10\frac{e^{10 u}}{10}

          Method #2

          1. Let u=e10uu = e^{10 u}.

            Then let du=10e10ududu = 10 e^{10 u} du and substitute du10\frac{du}{10}:

            1100du\int \frac{1}{100}\, du

            1. The integral of a constant times a function is the constant times the integral of the function:

              110du=1du10\int \frac{1}{10}\, du = \frac{\int 1\, du}{10}

              1. The integral of a constant is the constant times the variable of integration:

                1du=u\int 1\, du = u

              So, the result is: u10\frac{u}{10}

            Now substitute uu back in:

            e10u10\frac{e^{10 u}}{10}

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        e10u10du=e10udu10\int \frac{e^{10 u}}{10}\, du = \frac{\int e^{10 u}\, du}{10}

        1. Let u=10uu = 10 u.

          Then let du=10dudu = 10 du and substitute du10\frac{du}{10}:

          eu100du\int \frac{e^{u}}{100}\, du

          1. The integral of a constant times a function is the constant times the integral of the function:

            eu10du=eudu10\int \frac{e^{u}}{10}\, du = \frac{\int e^{u}\, du}{10}

            1. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            So, the result is: eu10\frac{e^{u}}{10}

          Now substitute uu back in:

          e10u10\frac{e^{10 u}}{10}

        So, the result is: e10u100\frac{e^{10 u}}{100}

      Now substitute uu back in:

      x10log(x)10x10100\frac{x^{10} \log{\left(x \right)}}{10} - \frac{x^{10}}{100}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=log(x)u{\left(x \right)} = \log{\left(x \right)} and let dv(x)=x9\operatorname{dv}{\left(x \right)} = x^{9}.

      Then du(x)=1x\operatorname{du}{\left(x \right)} = \frac{1}{x}.

      To find v(x)v{\left(x \right)}:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x9dx=x1010\int x^{9}\, dx = \frac{x^{10}}{10}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      x910dx=x9dx10\int \frac{x^{9}}{10}\, dx = \frac{\int x^{9}\, dx}{10}

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x9dx=x1010\int x^{9}\, dx = \frac{x^{10}}{10}

      So, the result is: x10100\frac{x^{10}}{100}

  2. Now simplify:

    x10(10log(x)1)100\frac{x^{10} \cdot \left(10 \log{\left(x \right)} - 1\right)}{100}

  3. Add the constant of integration:

    x10(10log(x)1)100+constant\frac{x^{10} \cdot \left(10 \log{\left(x \right)} - 1\right)}{100}+ \mathrm{constant}


The answer is:

x10(10log(x)1)100+constant\frac{x^{10} \cdot \left(10 \log{\left(x \right)} - 1\right)}{100}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                     10    10       
 |         9          x     x  *log(x)
 | log(x)*x  dx = C - --- + ----------
 |                    100       10    
/                                     
x10logx10x10100{{x^{10}\,\log x}\over{10}}-{{x^{10}}\over{100}}
The answer [src]
-1/100
1100-{{1}\over{100}}
=
=
-1/100
1100- \frac{1}{100}
Numerical answer [src]
-0.01
-0.01

    Use the examples entering the upper and lower limits of integration.