Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of sinxcos2x Integral of sinxcos2x
  • Integral of (x(x^2-7))/(x^2+2)dx Integral of (x(x^2-7))/(x^2+2)dx
  • Integral of (x^2)sin2x Integral of (x^2)sin2x
  • Integral of (x+2)lnx Integral of (x+2)lnx
  • Identical expressions

  • lnx/(x*sqrt(one -(ln(x)^ four)))
  • lnx divide by (x multiply by square root of (1 minus (ln(x) to the power of 4)))
  • lnx divide by (x multiply by square root of (one minus (ln(x) to the power of four)))
  • lnx/(x*√(1-(ln(x)^4)))
  • lnx/(x*sqrt(1-(ln(x)4)))
  • lnx/x*sqrt1-lnx4
  • lnx/(x*sqrt(1-(ln(x)⁴)))
  • lnx/(xsqrt(1-(ln(x)^4)))
  • lnx/(xsqrt(1-(ln(x)4)))
  • lnx/xsqrt1-lnx4
  • lnx/xsqrt1-lnx^4
  • lnx divide by (x*sqrt(1-(ln(x)^4)))
  • lnx/(x*sqrt(1-(ln(x)^4)))dx
  • Similar expressions

  • lnx/(x*sqrt(1+(ln(x)^4)))

Integral of lnx/(x*sqrt(1-(ln(x)^4))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                      
  /                      
 |                       
 |        log(x)         
 |  ------------------ dx
 |       _____________   
 |      /        4       
 |  x*\/  1 - log (x)    
 |                       
/                        
4                        
$$\int\limits_{4}^{0} \frac{\log{\left(x \right)}}{x \sqrt{1 - \log{\left(x \right)}^{4}}}\, dx$$
Integral(log(x)/((x*sqrt(1 - log(x)^4))), (x, 4, 0))
The answer (Indefinite) [src]
  /                              /                                                   
 |                              |                                                    
 |       log(x)                 |                      log(x)                        
 | ------------------ dx = C +  | ------------------------------------------------ dx
 |      _____________           |      ___________________________________________   
 |     /        4               |     /  /       2   \                               
 | x*\/  1 - log (x)            | x*\/  -\1 + log (x)/*(1 + log(x))*(-1 + log(x))    
 |                              |                                                    
/                              /                                                     
$$\int \frac{\log{\left(x \right)}}{x \sqrt{1 - \log{\left(x \right)}^{4}}}\, dx = C + \int \frac{\log{\left(x \right)}}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right) \left(\log{\left(x \right)}^{2} + 1\right)}}\, dx$$
The answer [src]
  0                                                      
  /                                                      
 |                                                       
 |                        log(x)                         
 |  -------------------------------------------------- dx
 |                                       _____________   
 |      _____________________________   /        2       
 |  x*\/ -(1 + log(x))*(-1 + log(x)) *\/  1 + log (x)    
 |                                                       
/                                                        
4                                                        
$$\int\limits_{4}^{0} \frac{\log{\left(x \right)}}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)} \sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
=
=
  0                                                      
  /                                                      
 |                                                       
 |                        log(x)                         
 |  -------------------------------------------------- dx
 |                                       _____________   
 |      _____________________________   /        2       
 |  x*\/ -(1 + log(x))*(-1 + log(x)) *\/  1 + log (x)    
 |                                                       
/                                                        
4                                                        
$$\int\limits_{4}^{0} \frac{\log{\left(x \right)}}{x \sqrt{- \left(\log{\left(x \right)} - 1\right) \left(\log{\left(x \right)} + 1\right)} \sqrt{\log{\left(x \right)}^{2} + 1}}\, dx$$
Integral(log(x)/(x*sqrt(-(1 + log(x))*(-1 + log(x)))*sqrt(1 + log(x)^2)), (x, 4, 0))
Numerical answer [src]
(-0.0323884442358661 - 3.41887875976503j)
(-0.0323884442358661 - 3.41887875976503j)

    Use the examples entering the upper and lower limits of integration.