Mister Exam

Other calculators

Integral of lnx/(1+x^2)^(1/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 + x     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 1}}\, dx$$
Integral(log(x)/sqrt(1 + x^2), (x, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

      InverseHyperbolicRule(func=asinh, context=1/sqrt(x**2 + 1), symbol=x)

    Now evaluate the sub-integral.

  2. Don't know the steps in finding this integral.

    But the integral is

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       /                             
 |                       |                              
 |    log(x)             | asinh(x)                     
 | ----------- dx = C -  | -------- dx + asinh(x)*log(x)
 |    ________           |    x                         
 |   /      2            |                              
 | \/  1 + x            /                               
 |                                                      
/                                                       
$$\int \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 1}}\, dx = C + \log{\left(x \right)} \operatorname{asinh}{\left(x \right)} - \int \frac{\operatorname{asinh}{\left(x \right)}}{x}\, dx$$
The answer [src]
  1               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 + x     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 1}}\, dx$$
=
=
  1               
  /               
 |                
 |     log(x)     
 |  ----------- dx
 |     ________   
 |    /      2    
 |  \/  1 + x     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\sqrt{x^{2} + 1}}\, dx$$
Integral(log(x)/sqrt(1 + x^2), (x, 0, 1))
Numerical answer [src]
-0.95520180648118
-0.95520180648118

    Use the examples entering the upper and lower limits of integration.