1 / | | log(x) | ----------- dx | ________ | / 2 | \/ 1 + x | / 0
Integral(log(x)/sqrt(1 + x^2), (x, 0, 1))
Use integration by parts:
Let and let .
Then .
To find :
InverseHyperbolicRule(func=asinh, context=1/sqrt(x**2 + 1), symbol=x)
Now evaluate the sub-integral.
Don't know the steps in finding this integral.
But the integral is
Add the constant of integration:
The answer is:
/ / | | | log(x) | asinh(x) | ----------- dx = C - | -------- dx + asinh(x)*log(x) | ________ | x | / 2 | | \/ 1 + x / | /
1 / | | log(x) | ----------- dx | ________ | / 2 | \/ 1 + x | / 0
=
1 / | | log(x) | ----------- dx | ________ | / 2 | \/ 1 + x | / 0
Integral(log(x)/sqrt(1 + x^2), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.