Integral of ln(x^2+y^2) da
The solution
Detail solution
-
Use integration by parts:
∫udv=uv−∫vdu
Let u(y)=log(x2+y2) and let dv(y)=1.
Then du(y)=x2+y22y.
To find v(y):
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
Now evaluate the sub-integral.
-
The integral of a constant times a function is the constant times the integral of the function:
∫x2+y22y2dy=2∫x2+y2y2dy
-
Rewrite the integrand:
x2+y2y2=−x2+y2x2+1
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x2+y2x2)dy=−x2∫x2+y21dy
-
The integral of y2+11 is x2atan(x2y).
So, the result is: −x2x2atan(x2y)
-
The integral of a constant is the constant times the variable of integration:
∫1dy=y
The result is: −x2x2atan(x2y)+y
So, the result is: −x22x2atan(x2y)+2y
-
Add the constant of integration:
x22x2atan(x2y)+ylog(x2+y2)−2y+constant
The answer is:
x22x2atan(x2y)+ylog(x2+y2)−2y+constant
The answer (Indefinite)
[src]
2 / y \
2*x *atan|-------|
/ | ____|
| | / 2 |
| / 2 2\ / 2 2\ \\/ x /
| log\x + y / dy = C - 2*y + y*log\x + y / + ------------------
| ____
/ / 2
\/ x
∫log(x2+y2)dy=C+x22x2atan(x2y)+ylog(x2+y2)−2y
/I*log(1 - I*x) I*log(1 + I*x)\ /I*log(-I*x) I*log(I*x)\ / 2\
-2 - 2*x*|-------------- - --------------| + 2*x*|----------- - ----------| + log\1 + x /
\ 2 2 / \ 2 2 /
2x(2ilog(−ix)−2ilog(ix))−2x(2ilog(−ix+1)−2ilog(ix+1))+log(x2+1)−2
=
/I*log(1 - I*x) I*log(1 + I*x)\ /I*log(-I*x) I*log(I*x)\ / 2\
-2 - 2*x*|-------------- - --------------| + 2*x*|----------- - ----------| + log\1 + x /
\ 2 2 / \ 2 2 /
2x(2ilog(−ix)−2ilog(ix))−2x(2ilog(−ix+1)−2ilog(ix+1))+log(x2+1)−2
-2 - 2*x*(i*log(1 - i*x)/2 - i*log(1 + i*x)/2) + 2*x*(i*log(-i*x)/2 - i*log(i*x)/2) + log(1 + x^2)
Use the examples entering the upper and lower limits of integration.