Mister Exam

Integral of ln(x)/√x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  log(x)   
 |  ------ dx
 |    ___    
 |  \/ x     
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\log{\left(x \right)}}{\sqrt{x}}\, dx$$
Integral(log(x)/sqrt(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        Now evaluate the sub-integral.

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of the exponential function is itself.

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. The integral of is when :

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                        
 |                                         
 | log(x)              ___       ___       
 | ------ dx = C - 4*\/ x  + 2*\/ x *log(x)
 |   ___                                   
 | \/ x                                    
 |                                         
/                                          
$$\int \frac{\log{\left(x \right)}}{\sqrt{x}}\, dx = C + 2 \sqrt{x} \log{\left(x \right)} - 4 \sqrt{x}$$
Numerical answer [src]
-3.99999997553465
-3.99999997553465

    Use the examples entering the upper and lower limits of integration.