Integral of ln^2(x-3)/(x-3) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=log(x−3).
Then let du=x−3dx and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3log(x−3)3
Method #2
-
Let u=x−3.
Then let du=dx and substitute du:
∫ulog(u)2du
-
Let u=u1.
Then let du=−u2du and substitute −du:
∫(−ulog(u1)2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u1)2du=−∫ulog(u1)2du
-
Let u=log(u1).
Then let du=−udu and substitute −du:
∫(−u2)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u2du=−∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −3u3
Now substitute u back in:
−3log(u1)3
So, the result is: 3log(u1)3
Now substitute u back in:
3log(u)3
Now substitute u back in:
3log(x−3)3
-
Now simplify:
3log(x−3)3
-
Add the constant of integration:
3log(x−3)3+constant
The answer is:
3log(x−3)3+constant
The answer (Indefinite)
[src]
/
|
| 2 3
| log (x - 3) log (x - 3)
| ----------- dx = C + -----------
| x - 3 3
|
/
∫x−3log(x−3)2dx=C+3log(x−3)3
The graph
3 3
(pi*I + log(3)) (pi*I + log(2))
- ---------------- + ----------------
3 3
3(log(2)+iπ)3−3(log(3)+iπ)3
=
3 3
(pi*I + log(3)) (pi*I + log(2))
- ---------------- + ----------------
3 3
3(log(2)+iπ)3−3(log(3)+iπ)3
-(pi*i + log(3))^3/3 + (pi*i + log(2))^3/3
(3.67079877942085 - 2.28235432962615j)
(3.67079877942085 - 2.28235432962615j)
Use the examples entering the upper and lower limits of integration.