1 / | | 2 | log (x - 3) | ----------- dx | x - 3 | / 0
Integral(log(x - 3)^2/(x - 3), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of is when :
Now substitute back in:
Let .
Then let and substitute :
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | | 2 3 | log (x - 3) log (x - 3) | ----------- dx = C + ----------- | x - 3 3 | /
3 3 (pi*I + log(3)) (pi*I + log(2)) - ---------------- + ---------------- 3 3
=
3 3 (pi*I + log(3)) (pi*I + log(2)) - ---------------- + ---------------- 3 3
-(pi*i + log(3))^3/3 + (pi*i + log(2))^3/3
(3.67079877942085 - 2.28235432962615j)
(3.67079877942085 - 2.28235432962615j)
Use the examples entering the upper and lower limits of integration.