Mister Exam

Other calculators

Integral of ln^2(x-3)/(x-3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     2          
 |  log (x - 3)   
 |  ----------- dx
 |     x - 3      
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{\log{\left(x - 3 \right)}^{2}}{x - 3}\, dx$$
Integral(log(x - 3)^2/(x - 3), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    Method #2

    1. Let .

      Then let and substitute :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is when :

              So, the result is:

            Now substitute back in:

          So, the result is:

        Now substitute back in:

      Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |    2                    3       
 | log (x - 3)          log (x - 3)
 | ----------- dx = C + -----------
 |    x - 3                  3     
 |                                 
/                                  
$$\int \frac{\log{\left(x - 3 \right)}^{2}}{x - 3}\, dx = C + \frac{\log{\left(x - 3 \right)}^{3}}{3}$$
The graph
The answer [src]
                 3                  3
  (pi*I + log(3))    (pi*I + log(2)) 
- ---------------- + ----------------
         3                  3        
$$\frac{\left(\log{\left(2 \right)} + i \pi\right)^{3}}{3} - \frac{\left(\log{\left(3 \right)} + i \pi\right)^{3}}{3}$$
=
=
                 3                  3
  (pi*I + log(3))    (pi*I + log(2)) 
- ---------------- + ----------------
         3                  3        
$$\frac{\left(\log{\left(2 \right)} + i \pi\right)^{3}}{3} - \frac{\left(\log{\left(3 \right)} + i \pi\right)^{3}}{3}$$
-(pi*i + log(3))^3/3 + (pi*i + log(2))^3/3
Numerical answer [src]
(3.67079877942085 - 2.28235432962615j)
(3.67079877942085 - 2.28235432962615j)

    Use the examples entering the upper and lower limits of integration.