Mister Exam

Other calculators

Integral of (ln(3*x-1))/(3*x-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  log(3*x - 1)   
 |  ------------ dx
 |    3*x - 1      
 |                 
/                  
1/3                
$$\int\limits_{\frac{1}{3}}^{1} \frac{\log{\left(3 x - 1 \right)}}{3 x - 1}\, dx$$
Integral(log(3*x - 1)/(3*x - 1), (x, 1/3, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. There are multiple ways to do this integral.

        Method #1

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of is when :

                So, the result is:

              Now substitute back in:

            So, the result is:

          Now substitute back in:

        Method #2

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                          2         
 | log(3*x - 1)          log (3*x - 1)
 | ------------ dx = C + -------------
 |   3*x - 1                   6      
 |                                    
/                                     
$$\int \frac{\log{\left(3 x - 1 \right)}}{3 x - 1}\, dx = C + \frac{\log{\left(3 x - 1 \right)}^{2}}{6}$$
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
(-283.773849354205 - 1.68049929284057j)
(-283.773849354205 - 1.68049929284057j)

    Use the examples entering the upper and lower limits of integration.