Mister Exam

Other calculators

Integral of ln(1+x)/(x*sqrtx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |  log(1 + x)   
 |  ---------- dx
 |       ___     
 |   x*\/ x      
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{\log{\left(x + 1 \right)}}{\sqrt{x} x}\, dx$$
Integral(log(1 + x)/((x*sqrt(x))), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 | log(1 + x)                /  1  \   2*log(1 + x)
 | ---------- dx = C - 4*atan|-----| - ------------
 |      ___                  |  ___|        ___    
 |  x*\/ x                   \\/ x /      \/ x     
 |                                                 
/                                                  
$$\int \frac{\log{\left(x + 1 \right)}}{\sqrt{x} x}\, dx = C - 4 \operatorname{atan}{\left(\frac{1}{\sqrt{x}} \right)} - \frac{2 \log{\left(x + 1 \right)}}{\sqrt{x}}$$
The graph
The answer [src]
pi - 2*log(2)
$$\pi - 2 \log{\left(2 \right)}$$
=
=
pi - 2*log(2)
$$\pi - 2 \log{\left(2 \right)}$$
pi - 2*log(2)
Numerical answer [src]
1.75529829193911
1.75529829193911

    Use the examples entering the upper and lower limits of integration.