Mister Exam

Other calculators

Integral of ln(1-x^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2               
  /               
 |                
 |     /     4\   
 |  log\1 - x / dx
 |                
/                 
0                 
$$\int\limits_{0}^{2} \log{\left(1 - x^{4} \right)}\, dx$$
Integral(log(1 - x^4), (x, 0, 2))
The answer (Indefinite) [src]
  /                                                                               
 |                                                                                
 |    /     4\                                               /     4\             
 | log\1 - x / dx = C - log(-1 + x) - 4*x + 2*atan(x) + x*log\1 - x / + log(1 + x)
 |                                                                                
/                                                                                 
$$\int \log{\left(1 - x^{4} \right)}\, dx = C + x \log{\left(1 - x^{4} \right)} - 4 x - \log{\left(x - 1 \right)} + \log{\left(x + 1 \right)} + 2 \operatorname{atan}{\left(x \right)}$$
The graph
The answer [src]
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
$$-8 + \log{\left(3 \right)} + 2 \operatorname{atan}{\left(2 \right)} + 2 \log{\left(15 \right)} + i \pi$$
=
=
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
$$-8 + \log{\left(3 \right)} + 2 \operatorname{atan}{\left(2 \right)} + 2 \log{\left(15 \right)} + i \pi$$
-8 + 2*atan(2) + 2*log(15) + pi*i + log(3)
Numerical answer [src]
(-inf + 3.10303951139804j)
(-inf + 3.10303951139804j)

    Use the examples entering the upper and lower limits of integration.