Integral of ln(1-x^4) dx
The solution
The answer (Indefinite)
[src]
/
|
| / 4\ / 4\
| log\1 - x / dx = C - log(-1 + x) - 4*x + 2*atan(x) + x*log\1 - x / + log(1 + x)
|
/
$$\int \log{\left(1 - x^{4} \right)}\, dx = C + x \log{\left(1 - x^{4} \right)} - 4 x - \log{\left(x - 1 \right)} + \log{\left(x + 1 \right)} + 2 \operatorname{atan}{\left(x \right)}$$
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
$$-8 + \log{\left(3 \right)} + 2 \operatorname{atan}{\left(2 \right)} + 2 \log{\left(15 \right)} + i \pi$$
=
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
$$-8 + \log{\left(3 \right)} + 2 \operatorname{atan}{\left(2 \right)} + 2 \log{\left(15 \right)} + i \pi$$
-8 + 2*atan(2) + 2*log(15) + pi*i + log(3)
(-inf + 3.10303951139804j)
(-inf + 3.10303951139804j)
Use the examples entering the upper and lower limits of integration.