Integral of ln(1-x^4) dx
The solution
The answer (Indefinite)
[src]
/
|
| / 4\ / 4\
| log\1 - x / dx = C - log(-1 + x) - 4*x + 2*atan(x) + x*log\1 - x / + log(1 + x)
|
/
∫log(1−x4)dx=C+xlog(1−x4)−4x−log(x−1)+log(x+1)+2atan(x)
The graph
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
−8+log(3)+2atan(2)+2log(15)+iπ
=
-8 + 2*atan(2) + 2*log(15) + pi*I + log(3)
−8+log(3)+2atan(2)+2log(15)+iπ
-8 + 2*atan(2) + 2*log(15) + pi*i + log(3)
(-inf + 3.10303951139804j)
(-inf + 3.10303951139804j)
Use the examples entering the upper and lower limits of integration.