Mister Exam

Other calculators

Integral of ln(n)/n^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo          
  /          
 |           
 |  log(n)   
 |  ------ dn
 |     2     
 |    n      
 |           
/            
1            
1log(n)n2dn\int\limits_{1}^{\infty} \frac{\log{\left(n \right)}}{n^{2}}\, dn
Integral(log(n)/n^2, (n, 1, oo))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=log(n)u = \log{\left(n \right)}.

      Then let du=dnndu = \frac{dn}{n} and substitute dudu:

      ueudu\int u e^{- u}\, du

      1. Let u=uu = - u.

        Then let du=dudu = - du and substitute dudu:

        ueudu\int u e^{u}\, du

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

          Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

          To find v(u)v{\left(u \right)}:

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        Now substitute uu back in:

        ueueu- u e^{- u} - e^{- u}

      Now substitute uu back in:

      log(n)n1n- \frac{\log{\left(n \right)}}{n} - \frac{1}{n}

    Method #2

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(n)=log(n)u{\left(n \right)} = \log{\left(n \right)} and let dv(n)=1n2\operatorname{dv}{\left(n \right)} = \frac{1}{n^{2}}.

      Then du(n)=1n\operatorname{du}{\left(n \right)} = \frac{1}{n}.

      To find v(n)v{\left(n \right)}:

      1. The integral of nnn^{n} is nn+1n+1\frac{n^{n + 1}}{n + 1} when n1n \neq -1:

        1n2dn=1n\int \frac{1}{n^{2}}\, dn = - \frac{1}{n}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (1n2)dn=1n2dn\int \left(- \frac{1}{n^{2}}\right)\, dn = - \int \frac{1}{n^{2}}\, dn

      1. The integral of nnn^{n} is nn+1n+1\frac{n^{n + 1}}{n + 1} when n1n \neq -1:

        1n2dn=1n\int \frac{1}{n^{2}}\, dn = - \frac{1}{n}

      So, the result is: 1n\frac{1}{n}

  2. Now simplify:

    log(n)+1n- \frac{\log{\left(n \right)} + 1}{n}

  3. Add the constant of integration:

    log(n)+1n+constant- \frac{\log{\left(n \right)} + 1}{n}+ \mathrm{constant}


The answer is:

log(n)+1n+constant- \frac{\log{\left(n \right)} + 1}{n}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                           
 | log(n)          1   log(n)
 | ------ dn = C - - - ------
 |    2            n     n   
 |   n                       
 |                           
/                            
log(n)n2dn=Clog(n)n1n\int \frac{\log{\left(n \right)}}{n^{2}}\, dn = C - \frac{\log{\left(n \right)}}{n} - \frac{1}{n}
The graph
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.00901-2
The answer [src]
1
11
=
=
1
11
1

    Use the examples entering the upper and lower limits of integration.