Mister Exam

Other calculators

Integral of ln((exp(1/x)+6)/5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo               
  /               
 |                
 |     / 1    \   
 |     | -    |   
 |     | x    |   
 |     |e  + 6|   
 |  log|------| dx
 |     \  5   /   
 |                
/                 
1                 
$$\int\limits_{1}^{\infty} \log{\left(\frac{e^{\frac{1}{x}} + 6}{5} \right)}\, dx$$
Integral(log((exp(1/x) + 6)/5), (x, 1, oo))
The answer (Indefinite) [src]
  /                                       /             
 |                                       |              
 |    / 1    \               / 1    \    |      1       
 |    | -    |               | -    |    |      -       
 |    | x    |               | x    |    |      x       
 |    |e  + 6|               |e  + 6|    |     e        
 | log|------| dx = C + x*log|------| +  | ---------- dx
 |    \  5   /               \  5   /    |   /     1\   
 |                                       |   |     -|   
/                                        |   |     x|   
                                         | x*\6 + e /   
                                         |              
                                        /               
$$\int \log{\left(\frac{e^{\frac{1}{x}} + 6}{5} \right)}\, dx = C + x \log{\left(\frac{e^{\frac{1}{x}} + 6}{5} \right)} + \int \frac{e^{\frac{1}{x}}}{x \left(e^{\frac{1}{x}} + 6\right)}\, dx$$
The answer [src]
      oo              
       /              
      |               
      |       1       
      |       -       
      |       x       
      |      e        
oo +  |  ---------- dx
      |    /     1\   
      |    |     -|   
      |    |     x|   
      |  x*\6 + e /   
      |               
     /                
     1                
$$\int\limits_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x \left(e^{\frac{1}{x}} + 6\right)}\, dx + \infty$$
=
=
      oo              
       /              
      |               
      |       1       
      |       -       
      |       x       
      |      e        
oo +  |  ---------- dx
      |    /     1\   
      |    |     -|   
      |    |     x|   
      |  x*\6 + e /   
      |               
     /                
     1                
$$\int\limits_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x \left(e^{\frac{1}{x}} + 6\right)}\, dx + \infty$$
oo + Integral(exp(1/x)/(x*(6 + exp(1/x))), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.