1 / | | log(7*x + 5) dx | / 0
Integral(log(7*x + 5), (x, 0, 1))
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant is the constant times the variable of integration:
So, the result is:
Now substitute back in:
Use integration by parts:
Let and let .
Then .
To find :
The integral of a constant is the constant times the variable of integration:
Now evaluate the sub-integral.
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 5 (7*x + 5)*log(7*x + 5) | log(7*x + 5) dx = - - + C - x + ---------------------- | 7 7 /
5*log(5) 12*log(12)
-1 - -------- + ----------
7 7
=
5*log(5) 12*log(12)
-1 - -------- + ----------
7 7
Use the examples entering the upper and lower limits of integration.