Mister Exam

Other calculators

Integral of ln²(x)/(x²+2x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                
  /                
 |                 
 |       2         
 |    log (x)      
 |  ------------ dx
 |   2             
 |  x  + 2*x + 2   
 |                 
/                  
0                  
$$\int\limits_{0}^{\infty} \frac{\log{\left(x \right)}^{2}}{\left(x^{2} + 2 x\right) + 2}\, dx$$
Integral(log(x)^2/(x^2 + 2*x + 2), (x, 0, oo))
The answer (Indefinite) [src]
  /                        /               
 |                        |                
 |      2                 |      2         
 |   log (x)              |   log (x)      
 | ------------ dx = C +  | ------------ dx
 |  2                     |      2         
 | x  + 2*x + 2           | 2 + x  + 2*x   
 |                        |                
/                        /                 
$$\int \frac{\log{\left(x \right)}^{2}}{\left(x^{2} + 2 x\right) + 2}\, dx = C + \int \frac{\log{\left(x \right)}^{2}}{x^{2} + 2 x + 2}\, dx$$
The answer [src]
 oo                
  /                
 |                 
 |       2         
 |    log (x)      
 |  ------------ dx
 |       2         
 |  2 + x  + 2*x   
 |                 
/                  
0                  
$$\int\limits_{0}^{\infty} \frac{\log{\left(x \right)}^{2}}{x^{2} + 2 x + 2}\, dx$$
=
=
 oo                
  /                
 |                 
 |       2         
 |    log (x)      
 |  ------------ dx
 |       2         
 |  2 + x  + 2*x   
 |                 
/                  
0                  
$$\int\limits_{0}^{\infty} \frac{\log{\left(x \right)}^{2}}{x^{2} + 2 x + 2}\, dx$$
Integral(log(x)^2/(2 + x^2 + 2*x), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.