Mister Exam

Other calculators


cosh(2x)sin(4x)

Integral of cosh(2x)sin(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  cosh(2*x)*sin(4*x) dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \sin{\left(4 x \right)} \cosh{\left(2 x \right)}\, dx$$
Integral(cosh(2*x)*sin(4*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                   
 |                             cos(4*x)*cosh(2*x)   sin(4*x)*sinh(2*x)
 | cosh(2*x)*sin(4*x) dx = C - ------------------ + ------------------
 |                                     5                    10        
/                                                                     
$${{e^ {- 2\,x }\,\left(\left(e^{4\,x}-1\right)\,\sin \left(4\,x \right)+\left(-2\,e^{4\,x}-2\right)\,\cos \left(4\,x\right)\right) }\over{20}}$$
The graph
The answer [src]
1   cos(4)*cosh(2)   sin(4)*sinh(2)
- - -------------- + --------------
5         5                10      
$${{e^ {- 2 }\,\left(\left(e^4-1\right)\,\sin 4+\left(-2\,e^4-2 \right)\,\cos 4\right)}\over{20}}+{{1}\over{5}}$$
=
=
1   cos(4)*cosh(2)   sin(4)*sinh(2)
- - -------------- + --------------
5         5                10      
$$\frac{\sin{\left(4 \right)} \sinh{\left(2 \right)}}{10} + \frac{1}{5} - \frac{\cos{\left(4 \right)} \cosh{\left(2 \right)}}{5}$$
Numerical answer [src]
0.417345342104261
0.417345342104261
The graph
Integral of cosh(2x)sin(4x) dx

    Use the examples entering the upper and lower limits of integration.