Mister Exam

Other calculators

Integral of (4^sqrt(ln)(x))/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |     ________     
 |   \/ log(x)      
 |  4          *x   
 |  ------------- dx
 |        x         
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{4^{\sqrt{\log{\left(x \right)}}} x}{x}\, dx$$
Integral((4^(sqrt(log(x)))*x)/x, (x, 0, 1))
The answer [src]
  1               
  /               
 |                
 |     ________   
 |   \/ log(x)    
 |  4           dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} 4^{\sqrt{\log{\left(x \right)}}}\, dx$$
=
=
  1               
  /               
 |                
 |     ________   
 |   \/ log(x)    
 |  4           dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} 4^{\sqrt{\log{\left(x \right)}}}\, dx$$
Integral(4^(sqrt(log(x))), (x, 0, 1))
Numerical answer [src]
(0.295047704965888 + 0.759875259374321j)
(0.295047704965888 + 0.759875259374321j)

    Use the examples entering the upper and lower limits of integration.