Mister Exam

Other calculators


4+sqrt(x)-e^(4*x)

Integral of 4+sqrt(x)-e^(4*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |  /      ___    4*x\   
 |  \4 + \/ x  - e   / dx
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \left(- e^{4 x} + \sqrt{x} + 4\right)\, dx$$
Integral(4 + sqrt(x) - E^(4*x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of is when :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Don't know the steps in finding this integral.

        But the integral is

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                               
 |                                    4*x      3/2
 | /      ___    4*x\                e      2*x   
 | \4 + \/ x  - e   / dx = C + 4*x - ---- + ------
 |                                    4       3   
/                                                 
$$-{{e^{4\,x}}\over{4}}+{{2\,x^{{{3}\over{2}}}}\over{3}}+4\,x$$
The graph
The answer [src]
      4
59   e 
-- - --
12   4 
$$-{{3\,e^4-59}\over{12}}$$
=
=
      4
59   e 
-- - --
12   4 
$$- \frac{e^{4}}{4} + \frac{59}{12}$$
Numerical answer [src]
-8.73287084161939
-8.73287084161939
The graph
Integral of 4+sqrt(x)-e^(4*x) dx

    Use the examples entering the upper and lower limits of integration.