E - 2 / | | (4*sin(x) + 2*cos(x)) dx | / 0
Integral(4*sin(x) + 2*cos(x), (x, 0, E/2))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | (4*sin(x) + 2*cos(x)) dx = C - 4*cos(x) + 2*sin(x) | /
/E\ /E\ 4 - 4*cos|-| + 2*sin|-| \2/ \2/
=
/E\ /E\ 4 - 4*cos|-| + 2*sin|-| \2/ \2/
4 - 4*cos(E/2) + 2*sin(E/2)
Use the examples entering the upper and lower limits of integration.