x - 3 / | | 3 | 4*sin (x)*cos(x) dx | / x - 4
Integral((4*sin(x)^3)*cos(x), (x, x/4, x/3))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Add the constant of integration:
The answer is:
/ | | 3 4 | 4*sin (x)*cos(x) dx = C + sin (x) | /
4/x\ 4/x\ sin |-| - sin |-| \3/ \4/
=
4/x\ 4/x\ sin |-| - sin |-| \3/ \4/
sin(x/3)^4 - sin(x/4)^4
Use the examples entering the upper and lower limits of integration.