Mister Exam

Other calculators

Integral of 4*3sqrt(x)-4/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /     ___   4\   
 |  |12*\/ x  - -| dx
 |  \           x/   
 |                   
/                    
0                    
01(12x4x)dx\int\limits_{0}^{1} \left(12 \sqrt{x} - \frac{4}{x}\right)\, dx
Integral(12*sqrt(x) - 4/x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      12xdx=12xdx\int 12 \sqrt{x}\, dx = 12 \int \sqrt{x}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=2x323\int \sqrt{x}\, dx = \frac{2 x^{\frac{3}{2}}}{3}

      So, the result is: 8x328 x^{\frac{3}{2}}

    1. The integral of a constant times a function is the constant times the integral of the function:

      (4x)dx=41xdx\int \left(- \frac{4}{x}\right)\, dx = - 4 \int \frac{1}{x}\, dx

      1. The integral of 1x\frac{1}{x} is log(x)\log{\left(x \right)}.

      So, the result is: 4log(x)- 4 \log{\left(x \right)}

    The result is: 8x324log(x)8 x^{\frac{3}{2}} - 4 \log{\left(x \right)}

  2. Add the constant of integration:

    8x324log(x)+constant8 x^{\frac{3}{2}} - 4 \log{\left(x \right)}+ \mathrm{constant}


The answer is:

8x324log(x)+constant8 x^{\frac{3}{2}} - 4 \log{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                         
 |                                          
 | /     ___   4\                        3/2
 | |12*\/ x  - -| dx = C - 4*log(x) + 8*x   
 | \           x/                           
 |                                          
/                                           
(12x4x)dx=C+8x324log(x)\int \left(12 \sqrt{x} - \frac{4}{x}\right)\, dx = C + 8 x^{\frac{3}{2}} - 4 \log{\left(x \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-5000050000
The answer [src]
-oo
-\infty
=
=
-oo
-\infty
-oo
Numerical answer [src]
-168.361784535972
-168.361784535972

    Use the examples entering the upper and lower limits of integration.