Integral of 4*3sqrt(x)-4/x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫12xdx=12∫xdx
-
The integral of xn is n+1xn+1 when n=−1:
∫xdx=32x23
So, the result is: 8x23
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−x4)dx=−4∫x1dx
-
The integral of x1 is log(x).
So, the result is: −4log(x)
The result is: 8x23−4log(x)
-
Add the constant of integration:
8x23−4log(x)+constant
The answer is:
8x23−4log(x)+constant
The answer (Indefinite)
[src]
/
|
| / ___ 4\ 3/2
| |12*\/ x - -| dx = C - 4*log(x) + 8*x
| \ x/
|
/
∫(12x−x4)dx=C+8x23−4log(x)
The graph
Use the examples entering the upper and lower limits of integration.