Mister Exam

Other calculators

Integral of 4-3x-x^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                  
  /                  
 |                   
 |  /           2\   
 |  \4 - 3*x - x / dx
 |                   
/                    
-4                   
$$\int\limits_{-4}^{0} \left(- x^{2} + \left(4 - 3 x\right)\right)\, dx$$
Integral(4 - 3*x - x^2, (x, -4, 0))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    1. Integrate term-by-term:

      1. The integral of a constant is the constant times the variable of integration:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      The result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                  2    3
 | /           2\                3*x    x 
 | \4 - 3*x - x / dx = C + 4*x - ---- - --
 |                                2     3 
/                                         
$$\int \left(- x^{2} + \left(4 - 3 x\right)\right)\, dx = C - \frac{x^{3}}{3} - \frac{3 x^{2}}{2} + 4 x$$
The graph
The answer [src]
56/3
$$\frac{56}{3}$$
=
=
56/3
$$\frac{56}{3}$$
56/3
Numerical answer [src]
18.6666666666667
18.6666666666667

    Use the examples entering the upper and lower limits of integration.