Mister Exam

Other calculators

Integral of 4/(x(ln^2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                   
  /                   
 |                    
 |         4          
 |  --------------- dx
 |    /   2       \   
 |  x*\log (x) + 1/   
 |                    
/                     
1                     
14x(log(x)2+1)dx\int\limits_{1}^{\infty} \frac{4}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx
Integral(4/((x*(log(x)^2 + 1))), (x, 1, oo))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    4x(log(x)2+1)dx=41x(log(x)2+1)dx\int \frac{4}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx = 4 \int \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx

    1. Don't know the steps in finding this integral.

      But the integral is

      RootSum(4z2+1,(iilog(2i+log(x))))\operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}

    So, the result is: 4RootSum(4z2+1,(iilog(2i+log(x))))4 \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}

  2. Now simplify:

    2ilog(log(x)i)+2ilog(log(x)+i)- 2 i \log{\left(\log{\left(x \right)} - i \right)} + 2 i \log{\left(\log{\left(x \right)} + i \right)}

  3. Add the constant of integration:

    2ilog(log(x)i)+2ilog(log(x)+i)+constant- 2 i \log{\left(\log{\left(x \right)} - i \right)} + 2 i \log{\left(\log{\left(x \right)} + i \right)}+ \mathrm{constant}


The answer is:

2ilog(log(x)i)+2ilog(log(x)+i)+constant- 2 i \log{\left(\log{\left(x \right)} - i \right)} + 2 i \log{\left(\log{\left(x \right)} + i \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                      
 |                                                                       
 |        4                          /   2                              \
 | --------------- dx = C + 4*RootSum\4*z  + 1, i -> i*log(2*i + log(x))/
 |   /   2       \                                                       
 | x*\log (x) + 1/                                                       
 |                                                                       
/                                                                        
4x(log(x)2+1)dx=C+4RootSum(4z2+1,(iilog(2i+log(x))))\int \frac{4}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx = C + 4 \operatorname{RootSum} {\left(4 z^{2} + 1, \left( i \mapsto i \log{\left(2 i + \log{\left(x \right)} \right)} \right)\right)}
The graph
1.00001.01001.00101.00201.00301.00401.00501.00601.00701.00801.0090-1010
The answer [src]
   oo                   
    /                   
   |                    
   |         1          
4* |  --------------- dx
   |    /       2   \   
   |  x*\1 + log (x)/   
   |                    
  /                     
  1                     
411x(log(x)2+1)dx4 \int\limits_{1}^{\infty} \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx
=
=
   oo                   
    /                   
   |                    
   |         1          
4* |  --------------- dx
   |    /       2   \   
   |  x*\1 + log (x)/   
   |                    
  /                     
  1                     
411x(log(x)2+1)dx4 \int\limits_{1}^{\infty} \frac{1}{x \left(\log{\left(x \right)}^{2} + 1\right)}\, dx
4*Integral(1/(x*(1 + log(x)^2)), (x, 1, oo))

    Use the examples entering the upper and lower limits of integration.