Mister Exam

Other calculators

Integral of 5^(-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi       
  /       
 |        
 |   -x   
 |  5   dx
 |        
/         
0         
$$\int\limits_{0}^{\pi} 5^{- x}\, dx$$
Integral(5^(-x), (x, 0, pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                   
 |                -x  
 |  -x           5    
 | 5   dx = C - ------
 |              log(5)
/                     
$$\int 5^{- x}\, dx = C - \frac{5^{- x}}{\log{\left(5 \right)}}$$
The graph
The answer [src]
           -pi 
  1       5    
------ - ------
log(5)   log(5)
$$- \frac{1}{5^{\pi} \log{\left(5 \right)}} + \frac{1}{\log{\left(5 \right)}}$$
=
=
           -pi 
  1       5    
------ - ------
log(5)   log(5)
$$- \frac{1}{5^{\pi} \log{\left(5 \right)}} + \frac{1}{\log{\left(5 \right)}}$$
1/log(5) - 5^(-pi)/log(5)
Numerical answer [src]
0.617377199284111
0.617377199284111

    Use the examples entering the upper and lower limits of integration.