Mister Exam

Other calculators


5^(2x)*cos(5x)

Integral of 5^(2x)*cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2*x            
 |  5   *cos(5*x) dx
 |                  
/                   
0                   
$$\int\limits_{0}^{1} 5^{2 x} \cos{\left(5 x \right)}\, dx$$
Integral(5^(2*x)*cos(5*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                               
 |                           2*x               2*x                
 |  2*x                   5*5   *sin(5*x)   2*5   *cos(5*x)*log(5)
 | 5   *cos(5*x) dx = C + --------------- + ----------------------
 |                                   2                    2       
/                          25 + 4*log (5)       25 + 4*log (5)    
$${{5\,e^{2\,\log 5\,x}\,\sin \left(5\,x\right)+2\,\log 5\,e^{2\, \log 5\,x}\,\cos \left(5\,x\right)}\over{4\,\left(\log 5\right)^2+25 }}$$
The graph
The answer [src]
     2*log(5)        125*sin(5)     50*cos(5)*log(5)
- -------------- + -------------- + ----------------
            2                2                 2    
  25 + 4*log (5)   25 + 4*log (5)    25 + 4*log (5) 
$${{125\,\sin 5+50\,\cos 5\,\log 5}\over{4\,\left(\log 5\right)^2+25 }}-{{2\,\log 5}\over{4\,\left(\log 5\right)^2+25}}$$
=
=
     2*log(5)        125*sin(5)     50*cos(5)*log(5)
- -------------- + -------------- + ----------------
            2                2                 2    
  25 + 4*log (5)   25 + 4*log (5)    25 + 4*log (5) 
$$\frac{125 \sin{\left(5 \right)}}{4 \log{\left(5 \right)}^{2} + 25} - \frac{2 \log{\left(5 \right)}}{4 \log{\left(5 \right)}^{2} + 25} + \frac{50 \log{\left(5 \right)} \cos{\left(5 \right)}}{4 \log{\left(5 \right)}^{2} + 25}$$
Numerical answer [src]
-2.83524556064383
-2.83524556064383
The graph
Integral of 5^(2x)*cos(5x) dx

    Use the examples entering the upper and lower limits of integration.