Mister Exam

Other calculators


(5-x)/(3x^2+1)

Integral of (5-x)/(3x^2+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   5 - x     
 |  -------- dx
 |     2       
 |  3*x  + 1   
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{- x + 5}{3 x^{2} + 1}\, dx$$
Integral((5 - x)/(3*x^2 + 1), (x, 0, 1))
Detail solution
We have the integral:
  /             
 |              
 |    5 - x     
 | 1*-------- dx
 |      2       
 |   3*x  + 1   
 |              
/               
Rewrite the integrand
             /  3*2*x + 0   \                      
             |--------------|           /5\        
             |   2          |           |-|        
 5 - x       \3*x  + 0*x + 1/           \1/        
-------- = - ---------------- + -------------------
   2                6                         2    
3*x  + 1                        /   ___      \     
                                \-\/ 3 *x + 0/  + 1
or
  /               
 |                
 |    5 - x       
 | 1*-------- dx  
 |      2        =
 |   3*x  + 1     
 |                
/                 
  
                                /                 
                               |                  
                               |   3*2*x + 0      
                               | -------------- dx
                               |    2             
    /                          | 3*x  + 0*x + 1   
   |                           |                  
   |          1               /                   
5* | ------------------- dx - --------------------
   |               2                   6          
   | /   ___      \                               
   | \-\/ 3 *x + 0/  + 1                          
   |                                              
  /                                               
In the integral
   /                  
  |                   
  |   3*2*x + 0       
- | -------------- dx 
  |    2              
  | 3*x  + 0*x + 1    
  |                   
 /                    
----------------------
          6           
do replacement
       2
u = 3*x 
then
the integral =
   /                        
  |                         
  |   1                     
- | ----- du                
  | 1 + u                   
  |                         
 /              -log(1 + u) 
------------- = ------------
      6              6      
do backward replacement
   /                                    
  |                                     
  |   3*2*x + 0                         
- | -------------- dx                   
  |    2                                
  | 3*x  + 0*x + 1                      
  |                          /       2\ 
 /                       -log\1 + 3*x / 
---------------------- = ---------------
          6                     6       
In the integral
    /                      
   |                       
   |          1            
5* | ------------------- dx
   |               2       
   | /   ___      \        
   | \-\/ 3 *x + 0/  + 1   
   |                       
  /                        
do replacement
         ___
v = -x*\/ 3 
then
the integral =
    /                     
   |                      
   |   1                  
5* | ------ dv = 5*atan(v)
   |      2               
   | 1 + v                
   |                      
  /                       
do backward replacement
    /                                              
   |                              ___     /    ___\
   |          1               5*\/ 3 *atan\x*\/ 3 /
5* | ------------------- dx = ---------------------
   |               2                    3          
   | /   ___      \                                
   | \-\/ 3 *x + 0/  + 1                           
   |                                               
  /                                                
Solution is:
       /1    2\                        
    log|- + x |       ___     /    ___\
       \3     /   5*\/ 3 *atan\x*\/ 3 /
C - ----------- + ---------------------
         6                  3          
The answer (Indefinite) [src]
  /                                                       
 |                      /       2\       ___     /    ___\
 |  5 - x            log\1 + 3*x /   5*\/ 3 *atan\x*\/ 3 /
 | -------- dx = C - ------------- + ---------------------
 |    2                    6                   3          
 | 3*x  + 1                                               
 |                                                        
/                                                         
$${{5\,\arctan \left(\sqrt{3}\,x\right)}\over{\sqrt{3}}}-{{\log \left(3\,x^2+1\right)}\over{6}}$$
The graph
The answer [src]
                             ___
  log(3)   log(4/3)   5*pi*\/ 3 
- ------ - -------- + ----------
    6         6           9     
$${{5\,\pi}\over{3^{{{3}\over{2}}}}}-{{\log 4}\over{6}}$$
=
=
                             ___
  log(3)   log(4/3)   5*pi*\/ 3 
- ------ - -------- + ----------
    6         6           9     
$$- \frac{\log{\left(3 \right)}}{6} - \frac{\log{\left(\frac{4}{3} \right)}}{6} + \frac{5 \sqrt{3} \pi}{9}$$
Numerical answer [src]
2.79194988020371
2.79194988020371
The graph
Integral of (5-x)/(3x^2+1) dx

    Use the examples entering the upper and lower limits of integration.