1 / | | 5 - x | -------- dx | 2 | 3*x + 1 | / 0
Integral((5 - x)/(3*x^2 + 1), (x, 0, 1))
/ | | 5 - x | 1*-------- dx | 2 | 3*x + 1 | /
/ 3*2*x + 0 \
|--------------| /5\
| 2 | |-|
5 - x \3*x + 0*x + 1/ \1/
-------- = - ---------------- + -------------------
2 6 2
3*x + 1 / ___ \
\-\/ 3 *x + 0/ + 1/ | | 5 - x | 1*-------- dx | 2 = | 3*x + 1 | /
/
|
| 3*2*x + 0
| -------------- dx
| 2
/ | 3*x + 0*x + 1
| |
| 1 /
5* | ------------------- dx - --------------------
| 2 6
| / ___ \
| \-\/ 3 *x + 0/ + 1
|
/ /
|
| 3*2*x + 0
- | -------------- dx
| 2
| 3*x + 0*x + 1
|
/
----------------------
6 2 u = 3*x
/
|
| 1
- | ----- du
| 1 + u
|
/ -log(1 + u)
------------- = ------------
6 6 /
|
| 3*2*x + 0
- | -------------- dx
| 2
| 3*x + 0*x + 1
| / 2\
/ -log\1 + 3*x /
---------------------- = ---------------
6 6 / | | 1 5* | ------------------- dx | 2 | / ___ \ | \-\/ 3 *x + 0/ + 1 | /
___ v = -x*\/ 3
/ | | 1 5* | ------ dv = 5*atan(v) | 2 | 1 + v | /
/ | ___ / ___\ | 1 5*\/ 3 *atan\x*\/ 3 / 5* | ------------------- dx = --------------------- | 2 3 | / ___ \ | \-\/ 3 *x + 0/ + 1 | /
/1 2\
log|- + x | ___ / ___\
\3 / 5*\/ 3 *atan\x*\/ 3 /
C - ----------- + ---------------------
6 3 / | / 2\ ___ / ___\ | 5 - x log\1 + 3*x / 5*\/ 3 *atan\x*\/ 3 / | -------- dx = C - ------------- + --------------------- | 2 6 3 | 3*x + 1 | /
___
log(3) log(4/3) 5*pi*\/ 3
- ------ - -------- + ----------
6 6 9
=
___
log(3) log(4/3) 5*pi*\/ 3
- ------ - -------- + ----------
6 6 9
Use the examples entering the upper and lower limits of integration.