Mister Exam

Other calculators

Integral of 5-1/2*cos(5x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  /    cos(5*x)\   
 |  |5 - --------| dx
 |  \       2    /   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \left(5 - \frac{\cos{\left(5 x \right)}}{2}\right)\, dx$$
Integral(5 - cos(5*x)/2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 | /    cos(5*x)\                sin(5*x)
 | |5 - --------| dx = C + 5*x - --------
 | \       2    /                   10   
 |                                       
/                                        
$$\int \left(5 - \frac{\cos{\left(5 x \right)}}{2}\right)\, dx = C + 5 x - \frac{\sin{\left(5 x \right)}}{10}$$
The graph
The answer [src]
    sin(5)
5 - ------
      10  
$$5 - \frac{\sin{\left(5 \right)}}{10}$$
=
=
    sin(5)
5 - ------
      10  
$$5 - \frac{\sin{\left(5 \right)}}{10}$$
5 - sin(5)/10
Numerical answer [src]
5.09589242746631
5.09589242746631

    Use the examples entering the upper and lower limits of integration.