Mister Exam

Other calculators

Integral of f*x/((g*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1       
  /       
 |        
 |  f*x   
 |  --- dx
 |  g*x   
 |        
/         
0         
$$\int\limits_{0}^{1} \frac{f x}{g x}\, dx$$
Integral((f*x)/((g*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /             //  f*x               \
 |              ||  ---     for g != 0|
 | f*x          ||   g                |
 | --- dx = C + |<                    |
 | g*x          ||       2            |
 |              ||zoo*f*x   otherwise |
/               \\                    /
$$\int \frac{f x}{g x}\, dx = C + \begin{cases} \frac{f x}{g} & \text{for}\: g \neq 0 \\\tilde{\infty} f x^{2} & \text{otherwise} \end{cases}$$
The answer [src]
f
-
g
$$\frac{f}{g}$$
=
=
f
-
g
$$\frac{f}{g}$$
f/g

    Use the examples entering the upper and lower limits of integration.