Mister Exam

Other calculators

Integral of exp(y-x)*sin(y) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  y                 
  /                 
 |                  
 |   y - x          
 |  e     *sin(y) dx
 |                  
/                   
0                   
0yex+ysin(y)dx\int\limits_{0}^{y} e^{- x + y} \sin{\left(y \right)}\, dx
Integral(exp(y - x)*sin(y), (x, 0, y))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    ex+ysin(y)dx=sin(y)ex+ydx\int e^{- x + y} \sin{\left(y \right)}\, dx = \sin{\left(y \right)} \int e^{- x + y}\, dx

    1. Let u=x+yu = - x + y.

      Then let du=dxdu = - dx and substitute du- du:

      (eu)du\int \left(- e^{u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu- e^{u}

      Now substitute uu back in:

      ex+y- e^{- x + y}

    So, the result is: ex+ysin(y)- e^{- x + y} \sin{\left(y \right)}

  2. Add the constant of integration:

    ex+ysin(y)+constant- e^{- x + y} \sin{\left(y \right)}+ \mathrm{constant}


The answer is:

ex+ysin(y)+constant- e^{- x + y} \sin{\left(y \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                    
 |                                     
 |  y - x                  y - x       
 | e     *sin(y) dx = C - e     *sin(y)
 |                                     
/                                      
ex+ysin(y)dx=Cex+ysin(y)\int e^{- x + y} \sin{\left(y \right)}\, dx = C - e^{- x + y} \sin{\left(y \right)}
The answer [src]
           y       
-sin(y) + e *sin(y)
eysin(y)sin(y)e^{y} \sin{\left(y \right)} - \sin{\left(y \right)}
=
=
           y       
-sin(y) + e *sin(y)
eysin(y)sin(y)e^{y} \sin{\left(y \right)} - \sin{\left(y \right)}
-sin(y) + exp(y)*sin(y)

    Use the examples entering the upper and lower limits of integration.