y / | | y - x | e *sin(y) dx | / 0
Integral(exp(y - x)*sin(y), (x, 0, y))
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of the exponential function is itself.
So, the result is:
Now substitute back in:
So, the result is:
Add the constant of integration:
The answer is:
/ | | y - x y - x | e *sin(y) dx = C - e *sin(y) | /
y -sin(y) + e *sin(y)
=
y -sin(y) + e *sin(y)
-sin(y) + exp(y)*sin(y)
Use the examples entering the upper and lower limits of integration.