t / | | 4 | (x + 1) | -------- | 8 | e *y dx | / 0
Integral(exp((x + 1)^4/8)*y, (x, 0, t))
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | -pi*I | 4 ------ / 4 pi*I\ | (x + 1) 3/4 4 | (1 + x) *e | | -------- y*2 *e *Gamma(1/4)*lowergamma|1/4, --------------| | 8 \ 8 / | e *y dx = C + --------------------------------------------------------- | 16*Gamma(5/4) /
-pi*I -pi*I ------ / pi*I\ ------ / 4 pi*I\ 3/4 4 | e | 3/4 4 | (1 + t) *e | y*2 *e *Gamma(1/4)*lowergamma|1/4, -----| y*2 *e *Gamma(1/4)*lowergamma|1/4, --------------| \ 8 / \ 8 / - ------------------------------------------------ + --------------------------------------------------------- 16*Gamma(5/4) 16*Gamma(5/4)
=
-pi*I -pi*I ------ / pi*I\ ------ / 4 pi*I\ 3/4 4 | e | 3/4 4 | (1 + t) *e | y*2 *e *Gamma(1/4)*lowergamma|1/4, -----| y*2 *e *Gamma(1/4)*lowergamma|1/4, --------------| \ 8 / \ 8 / - ------------------------------------------------ + --------------------------------------------------------- 16*Gamma(5/4) 16*Gamma(5/4)
-y*2^(3/4)*exp(-pi*i/4)*gamma(1/4)*lowergamma(1/4, exp_polar(pi*i)/8)/(16*gamma(5/4)) + y*2^(3/4)*exp(-pi*i/4)*gamma(1/4)*lowergamma(1/4, (1 + t)^4*exp_polar(pi*i)/8)/(16*gamma(5/4))
Use the examples entering the upper and lower limits of integration.