Mister Exam

Other calculators

Integral of exp(x)*((x-1)/x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |   x x - 1   
 |  e *----- dx
 |        2    
 |       x     
 |             
/              
0              
$$\int\limits_{0}^{1} \frac{x - 1}{x^{2}} e^{x}\, dx$$
Integral(exp(x)*((x - 1)/x^2), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Rewrite the integrand:

    3. Integrate term-by-term:

        EiRule(a=1, b=0, context=exp(x)/x, symbol=x)

      1. The integral of a constant times a function is the constant times the integral of the function:

          UpperGammaRule(a=1, e=-2, context=exp(x)/x**2, symbol=x)

        So, the result is:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

        EiRule(a=1, b=0, context=exp(x)/x, symbol=x)

      1. The integral of a constant times a function is the constant times the integral of the function:

          UpperGammaRule(a=1, e=-2, context=exp(x)/x**2, symbol=x)

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                       
 |                                        
 |  x x - 1          expint(2, -x)        
 | e *----- dx = C + ------------- + Ei(x)
 |       2                 x              
 |      x                                 
 |                                        
/                                         
$$\int \frac{x - 1}{x^{2}} e^{x}\, dx = C + \operatorname{Ei}{\left(x \right)} + \frac{\operatorname{E}_{2}\left(- x\right)}{x}$$
The graph
The answer [src]
-oo
$$-\infty$$
=
=
-oo
$$-\infty$$
-oo
Numerical answer [src]
-1.3793236779486e+19
-1.3793236779486e+19

    Use the examples entering the upper and lower limits of integration.