Mister Exam

Other calculators

Integral of (exp(x)-1)/(1-cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |     x         
 |    e  - 1     
 |  ---------- dx
 |  1 - cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{e^{x} - 1}{1 - \cos{\left(x \right)}}\, dx$$
Integral((exp(x) - 1)/(1 - cos(x)), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. Don't know the steps in finding this integral.

          But the integral is

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Don't know the steps in finding this integral.

            But the integral is

          So, the result is:

        The result is:

      So, the result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Rewrite the integrand:

      2. The integral of a constant times a function is the constant times the integral of the function:

        1. Don't know the steps in finding this integral.

          But the integral is

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. The integral of a constant times a function is the constant times the integral of the function:

          1. Don't know the steps in finding this integral.

            But the integral is

          So, the result is:

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               /              
 |                               |               
 |    x                          |       x       
 |   e  - 1              1       |      e        
 | ---------- dx = C + ------ -  | ----------- dx
 | 1 - cos(x)             /x\    | -1 + cos(x)   
 |                     tan|-|    |               
/                         \2/   /                
$$\int \frac{e^{x} - 1}{1 - \cos{\left(x \right)}}\, dx = C - \int \frac{e^{x}}{\cos{\left(x \right)} - 1}\, dx + \frac{1}{\tan{\left(\frac{x}{2} \right)}}$$
The answer [src]
                         1               
    1                    /               
    /                   |                
   |                    |        x       
   |      -1            |       e        
-  |  ----------- dx -  |  ----------- dx
   |  -1 + cos(x)       |  -1 + cos(x)   
   |                    |                
  /                    /                 
  0                    0                 
$$- \int\limits_{0}^{1} \left(- \frac{1}{\cos{\left(x \right)} - 1}\right)\, dx - \int\limits_{0}^{1} \frac{e^{x}}{\cos{\left(x \right)} - 1}\, dx$$
=
=
                         1               
    1                    /               
    /                   |                
   |                    |        x       
   |      -1            |       e        
-  |  ----------- dx -  |  ----------- dx
   |  -1 + cos(x)       |  -1 + cos(x)   
   |                    |                
  /                    /                 
  0                    0                 
$$- \int\limits_{0}^{1} \left(- \frac{1}{\cos{\left(x \right)} - 1}\right)\, dx - \int\limits_{0}^{1} \frac{e^{x}}{\cos{\left(x \right)} - 1}\, dx$$
-Integral(-1/(-1 + cos(x)), (x, 0, 1)) - Integral(exp(x)/(-1 + cos(x)), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.