Integral of (exp^x)/(2+exp^(2x)) dx
The solution
Detail solution
-
Let u=ex.
Then let du=exdx and substitute du:
∫u2+21du
-
The integral of u2+11 is 22atan(22u).
Now substitute u back in:
22atan(22ex)
-
Add the constant of integration:
22atan(22ex)+constant
The answer is:
22atan(22ex)+constant
The answer (Indefinite)
[src]
/ / ___ x\
| ___ |\/ 2 *e |
| x \/ 2 *atan|--------|
| e \ 2 /
| -------- dx = C + --------------------
| 2*x 2
| 2 + e
|
/
2arctan(2ex)
The graph
/ 2 \ / 2 \
- RootSum\8*z + 1, i -> i*log(1 + 4*i)/ + RootSum\8*z + 1, i -> i*log(e + 4*i)/
2arctan(2e)−2arctan(21)
=
/ 2 \ / 2 \
- RootSum\8*z + 1, i -> i*log(1 + 4*i)/ + RootSum\8*z + 1, i -> i*log(e + 4*i)/
−RootSum(8z2+1,(i↦ilog(4i+1)))+RootSum(8z2+1,(i↦ilog(4i+e)))
Use the examples entering the upper and lower limits of integration.