Mister Exam

Other calculators


(exp^x)/(2+exp^(2x))

Integral of (exp^x)/(2+exp^(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1            
  /            
 |             
 |      x      
 |     e       
 |  -------- dx
 |       2*x   
 |  2 + e      
 |             
/              
0              
01exe2x+2dx\int\limits_{0}^{1} \frac{e^{x}}{e^{2 x} + 2}\, dx
Integral(E^x/(2 + E^(2*x)), (x, 0, 1))
Detail solution
  1. Let u=exu = e^{x}.

    Then let du=exdxdu = e^{x} dx and substitute dudu:

    1u2+2du\int \frac{1}{u^{2} + 2}\, du

    1. The integral of 1u2+1\frac{1}{u^{2} + 1} is 2atan(2u2)2\frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} u}{2} \right)}}{2}.

    Now substitute uu back in:

    2atan(2ex2)2\frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} e^{x}}{2} \right)}}{2}

  2. Add the constant of integration:

    2atan(2ex2)2+constant\frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} e^{x}}{2} \right)}}{2}+ \mathrm{constant}


The answer is:

2atan(2ex2)2+constant\frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{2} e^{x}}{2} \right)}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                            /  ___  x\
 |                     ___     |\/ 2 *e |
 |     x             \/ 2 *atan|--------|
 |    e                        \   2    /
 | -------- dx = C + --------------------
 |      2*x                   2          
 | 2 + e                                 
 |                                       
/                                        
arctan(ex2)2{{\arctan \left({{e^{x}}\over{\sqrt{2}}}\right)}\over{\sqrt{2}}}
The graph
0.001.000.100.200.300.400.500.600.700.800.901-1
The answer [src]
         /   2                         \          /   2                         \
- RootSum\8*z  + 1, i -> i*log(1 + 4*i)/ + RootSum\8*z  + 1, i -> i*log(e + 4*i)/
arctan(e2)2arctan(12)2{{\arctan \left({{e}\over{\sqrt{2}}}\right)}\over{\sqrt{2}}}-{{ \arctan \left({{1}\over{\sqrt{2}}}\right)}\over{\sqrt{2}}}
=
=
         /   2                         \          /   2                         \
- RootSum\8*z  + 1, i -> i*log(1 + 4*i)/ + RootSum\8*z  + 1, i -> i*log(e + 4*i)/
RootSum(8z2+1,(iilog(4i+1)))+RootSum(8z2+1,(iilog(4i+e)))- \operatorname{RootSum} {\left(8 z^{2} + 1, \left( i \mapsto i \log{\left(4 i + 1 \right)} \right)\right)} + \operatorname{RootSum} {\left(8 z^{2} + 1, \left( i \mapsto i \log{\left(4 i + e \right)} \right)\right)}
Numerical answer [src]
0.336294761863011
0.336294761863011
The graph
Integral of (exp^x)/(2+exp^(2x)) dx

    Use the examples entering the upper and lower limits of integration.