The answer (Indefinite)
[src]
// /sin(b*x) x*cos(b*x) \
|| |-------- - ---------- for b != 0 |
|| | 2 b |
|| < b for a = 0|
|| | |
|| | 0 otherwise |
|| \ |
|| |
|| // 0 for And(a = 0, b = 0)\ |
|| || | |
/ || || I*b*x I*b*x I*b*x | | // x for a = 0\
| || || x*e *sin(b*x) I*x*cos(b*x)*e I*e *sin(b*x) | | || |
| -a*x || || ----------------- + ------------------- - ----------------- for a = -I*b | | || -a*x |
| e *cos(b*x) dx = C + b*|< || 2 2 2*b | | + |<-e |*cos(b*x)
| || || | | ||------- otherwise|
/ || || -I*b*x -I*b*x -I*b*x | | || a |
||-|
$$\int e^{- a x} \cos{\left(b x \right)}\, dx = C + b \left(\begin{cases} \begin{cases} - \frac{x \cos{\left(b x \right)}}{b} + \frac{\sin{\left(b x \right)}}{b^{2}} & \text{for}\: b \neq 0 \\0 & \text{otherwise} \end{cases} & \text{for}\: a = 0 \\- \frac{\begin{cases} 0 & \text{for}\: a = 0 \wedge b = 0 \\\frac{x e^{i b x} \sin{\left(b x \right)}}{2} + \frac{i x e^{i b x} \cos{\left(b x \right)}}{2} - \frac{i e^{i b x} \sin{\left(b x \right)}}{2 b} & \text{for}\: a = - i b \\\frac{x e^{- i b x} \sin{\left(b x \right)}}{2} - \frac{i x e^{- i b x} \cos{\left(b x \right)}}{2} + \frac{i e^{- i b x} \sin{\left(b x \right)}}{2 b} & \text{for}\: a = i b \\- \frac{a \sin{\left(b x \right)}}{a^{2} e^{a x} + b^{2} e^{a x}} - \frac{b \cos{\left(b x \right)}}{a^{2} e^{a x} + b^{2} e^{a x}} & \text{otherwise} \end{cases}}{a} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} x & \text{for}\: a = 0 \\- \frac{e^{- a x}}{a} & \text{otherwise} \end{cases}\right) \cos{\left(b x \right)}$$
/ 1 for Or(And(a = 0, b = 0), And(a = 0, a = -I*b, b = 0), And(a = 0, a = I*b, b = 0), And(a = 0, a = -I*b, a = I*b, b = 0))
|
| I*b I*b I*b
| cos(b)*e e *sin(b) I*e *sin(b)
| ----------- + ----------- - ------------- for Or(And(a = 0, a = -I*b), And(a = -I*b, a = I*b), And(a = -I*b, b = 0), And(a = 0, a = -I*b, a = I*b), And(a = -I*b, a = I*b, b = 0), a = -I*b)
| 2 2*b 2
|
| -I*b -I*b -I*b
$$\begin{cases} 1 & \text{for}\: \left(a = 0 \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b \wedge b = 0\right) \\- \frac{i e^{i b} \sin{\left(b \right)}}{2} + \frac{e^{i b} \cos{\left(b \right)}}{2} + \frac{e^{i b} \sin{\left(b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = - i b\right) \vee \left(a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge a = i b \wedge b = 0\right) \vee a = - i b \\\frac{i e^{- i b} \sin{\left(b \right)}}{2} + \frac{e^{- i b} \cos{\left(b \right)}}{2} + \frac{e^{- i b} \sin{\left(b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = i b\right) \vee \left(a = i b \wedge b = 0\right) \vee a = i b \\- \frac{a \cos{\left(b \right)}}{a^{2} e^{a} + b^{2} e^{a}} + \frac{a}{a^{2} + b^{2}} + \frac{b \sin{\left(b \right)}}{a^{2} e^{a} + b^{2} e^{a}} & \text{otherwise} \end{cases}$$
=
/ 1 for Or(And(a = 0, b = 0), And(a = 0, a = -I*b, b = 0), And(a = 0, a = I*b, b = 0), And(a = 0, a = -I*b, a = I*b, b = 0))
|
| I*b I*b I*b
| cos(b)*e e *sin(b) I*e *sin(b)
| ----------- + ----------- - ------------- for Or(And(a = 0, a = -I*b), And(a = -I*b, a = I*b), And(a = -I*b, b = 0), And(a = 0, a = -I*b, a = I*b), And(a = -I*b, a = I*b, b = 0), a = -I*b)
| 2 2*b 2
|
| -I*b -I*b -I*b
$$\begin{cases} 1 & \text{for}\: \left(a = 0 \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b \wedge b = 0\right) \\- \frac{i e^{i b} \sin{\left(b \right)}}{2} + \frac{e^{i b} \cos{\left(b \right)}}{2} + \frac{e^{i b} \sin{\left(b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = - i b\right) \vee \left(a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge b = 0\right) \vee \left(a = 0 \wedge a = - i b \wedge a = i b\right) \vee \left(a = - i b \wedge a = i b \wedge b = 0\right) \vee a = - i b \\\frac{i e^{- i b} \sin{\left(b \right)}}{2} + \frac{e^{- i b} \cos{\left(b \right)}}{2} + \frac{e^{- i b} \sin{\left(b \right)}}{2 b} & \text{for}\: \left(a = 0 \wedge a = i b\right) \vee \left(a = i b \wedge b = 0\right) \vee a = i b \\- \frac{a \cos{\left(b \right)}}{a^{2} e^{a} + b^{2} e^{a}} + \frac{a}{a^{2} + b^{2}} + \frac{b \sin{\left(b \right)}}{a^{2} e^{a} + b^{2} e^{a}} & \text{otherwise} \end{cases}$$
Piecewise((1, ((a = 0)∧(b = 0))∨((a = 0)∧(b = 0)∧(a = i*b))∨((a = 0)∧(b = 0)∧(a = -i*b))∨((a = 0)∧(b = 0)∧(a = i*b)∧(a = -i*b))), (cos(b)*exp(i*b)/2 + exp(i*b)*sin(b)/(2*b) - i*exp(i*b)*sin(b)/2, (a = -i*b)∨((a = 0)∧(a = -i*b))∨((b = 0)∧(a = -i*b))∨((a = i*b)∧(a = -i*b))∨((a = 0)∧(a = i*b)∧(a = -i*b))∨((b = 0)∧(a = i*b)∧(a = -i*b))), (cos(b)*exp(-i*b)/2 + i*exp(-i*b)*sin(b)/2 + exp(-i*b)*sin(b)/(2*b), (a = i*b)∨((a = 0)∧(a = i*b))∨((b = 0)∧(a = i*b))), (a/(a^2 + b^2) + b*sin(b)/(a^2*exp(a) + b^2*exp(a)) - a*cos(b)/(a^2*exp(a) + b^2*exp(a)), True))