Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of e^3 Integral of e^3
  • Integral of (1-x^2)/(1+x^2) Integral of (1-x^2)/(1+x^2)
  • Integral of 1/(x+1)^3 Integral of 1/(x+1)^3
  • Integral of tan^(-1)x
  • Identical expressions

  • eight ^ctg(two x)* one /sin(2x)^2
  • 8 to the power of ctg(2x) multiply by 1 divide by sinus of (2x) squared
  • eight to the power of ctg(two x) multiply by one divide by sinus of (2x) squared
  • 8ctg(2x)*1/sin(2x)2
  • 8ctg2x*1/sin2x2
  • 8^ctg(2x)*1/sin(2x)²
  • 8 to the power of ctg(2x)*1/sin(2x) to the power of 2
  • 8^ctg(2x)1/sin(2x)^2
  • 8ctg(2x)1/sin(2x)2
  • 8ctg2x1/sin2x2
  • 8^ctg2x1/sin2x^2
  • 8^ctg(2x)*1 divide by sin(2x)^2
  • 8^ctg(2x)*1/sin(2x)^2dx

Integral of 8^ctg(2x)*1/sin(2x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |   cot(2*x)       1       
 |  8        *1*--------- dx
 |                 2        
 |              sin (2*x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} 8^{\cot{\left(2 x \right)}} 1 \cdot \frac{1}{\sin^{2}{\left(2 x \right)}}\, dx$$
Integral(8^cot(2*x)*1/sin(2*x)^2, (x, 0, 1))
The answer (Indefinite) [src]
                                    /            
  /                                |             
 |                                 |  cot(2*x)   
 |  cot(2*x)       1               | 8           
 | 8        *1*--------- dx = C +  | --------- dx
 |                2                |    2        
 |             sin (2*x)           | sin (2*x)   
 |                                 |             
/                                 /              
$$-{{8^{{{1}\over{\tan \left(2\,x\right)}}}}\over{2\,\log 8}}$$
The answer [src]
  1             
  /             
 |              
 |   cot(2*x)   
 |  8           
 |  --------- dx
 |     2        
 |  sin (2*x)   
 |              
/               
0               
$${\it \%a}$$
=
=
  1             
  /             
 |              
 |   cot(2*x)   
 |  8           
 |  --------- dx
 |     2        
 |  sin (2*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{8^{\cot{\left(2 x \right)}}}{\sin^{2}{\left(2 x \right)}}\, dx$$
Numerical answer [src]
9.15365037903492e+37
9.15365037903492e+37

    Use the examples entering the upper and lower limits of integration.