Mister Exam

Integral of e^(xy) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   x*y   
 |  e    dy
 |         
/          
0          
$$\int\limits_{0}^{1} e^{x y}\, dy$$
Integral(E^(x*y), (y, 0, 1))
The answer (Indefinite) [src]
  /              // x*y            \
 |               ||e               |
 |  x*y          ||----  for x != 0|
 | e    dy = C + |< x              |
 |               ||                |
/                || y    otherwise |
                 \\                /
$$\int e^{x y}\, dy = C + \begin{cases} \frac{e^{x y}}{x} & \text{for}\: x \neq 0 \\y & \text{otherwise} \end{cases}$$
The answer [src]
/       x                                  
|  1   e                                   
|- - + --  for And(x > -oo, x < oo, x != 0)
<  x   x                                   
|                                          
|   1                 otherwise            
\                                          
$$\begin{cases} \frac{e^{x}}{x} - \frac{1}{x} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\1 & \text{otherwise} \end{cases}$$
=
=
/       x                                  
|  1   e                                   
|- - + --  for And(x > -oo, x < oo, x != 0)
<  x   x                                   
|                                          
|   1                 otherwise            
\                                          
$$\begin{cases} \frac{e^{x}}{x} - \frac{1}{x} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\1 & \text{otherwise} \end{cases}$$

    Use the examples entering the upper and lower limits of integration.