Integral of e^(xy) dy
The solution
The answer (Indefinite)
[src]
/ // x*y \
| ||e |
| x*y ||---- for x != 0|
| e dy = C + |< x |
| || |
/ || y otherwise |
\\ /
$$\int e^{x y}\, dy = C + \begin{cases} \frac{e^{x y}}{x} & \text{for}\: x \neq 0 \\y & \text{otherwise} \end{cases}$$
/ x
| 1 e
|- - + -- for And(x > -oo, x < oo, x != 0)
< x x
|
| 1 otherwise
\
$$\begin{cases} \frac{e^{x}}{x} - \frac{1}{x} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\1 & \text{otherwise} \end{cases}$$
=
/ x
| 1 e
|- - + -- for And(x > -oo, x < oo, x != 0)
< x x
|
| 1 otherwise
\
$$\begin{cases} \frac{e^{x}}{x} - \frac{1}{x} & \text{for}\: x > -\infty \wedge x < \infty \wedge x \neq 0 \\1 & \text{otherwise} \end{cases}$$
Use the examples entering the upper and lower limits of integration.