Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of -e^x Integral of -e^x
  • Integral of -15x^2 Integral of -15x^2
  • Integral of xe^(1-x) Integral of xe^(1-x)
  • Integral of -xe^x Integral of -xe^x
  • Identical expressions

  • e^(x^ two *x*dx)dx
  • e to the power of (x squared multiply by x multiply by dx)dx
  • e to the power of (x to the power of two multiply by x multiply by dx)dx
  • e(x2*x*dx)dx
  • ex2*x*dxdx
  • e^(x²*x*dx)dx
  • e to the power of (x to the power of 2*x*dx)dx
  • e^(x^2xdx)dx
  • e(x2xdx)dx
  • ex2xdxdx
  • e^x^2xdxdx

Integral of e^(x^2*x*dx)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |    2     
 |   x *x   
 |  E     dx
 |          
/           
0           
$$\int\limits_{0}^{1} e^{x x^{2}}\, dx$$
Integral(E^(x^2*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                -pi*I                                      
 |                 ------                                     
 |   2               3                         /      3  pi*I\
 |  x *x          e      *Gamma(1/3)*lowergamma\1/3, x *e    /
 | E     dx = C + --------------------------------------------
 |                                9*Gamma(4/3)                
/                                                             
$$\int e^{x x^{2}}\, dx = C + \frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, x^{3} e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
The graph
The answer [src]
 -pi*I                                   
 ------                                  
   3                         /      pi*I\
e      *Gamma(1/3)*lowergamma\1/3, e    /
-----------------------------------------
               9*Gamma(4/3)              
$$\frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
=
=
 -pi*I                                   
 ------                                  
   3                         /      pi*I\
e      *Gamma(1/3)*lowergamma\1/3, e    /
-----------------------------------------
               9*Gamma(4/3)              
$$\frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
exp(-pi*i/3)*gamma(1/3)*lowergamma(1/3, exp_polar(pi*i))/(9*gamma(4/3))
Numerical answer [src]
1.34190441797742
1.34190441797742

    Use the examples entering the upper and lower limits of integration.