Mister Exam

Other calculators

Integral of e^x*y*sin(y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   x            
 |  E *y*sin(y) dy
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{x} y \sin{\left(y \right)}\, dy$$
Integral((E^x*y)*sin(y), (y, 0, 1))
Detail solution
  1. Use integration by parts:

    Let and let .

    Then .

    To find :

    1. The integral of sine is negative cosine:

    Now evaluate the sub-integral.

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of cosine is sine:

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 |  x                    x                    x
 | E *y*sin(y) dy = C + e *sin(y) - y*cos(y)*e 
 |                                             
/                                              
$$\int e^{x} y \sin{\left(y \right)}\, dy = C - y e^{x} \cos{\left(y \right)} + e^{x} \sin{\left(y \right)}$$
The answer [src]
                    x
(-cos(1) + sin(1))*e 
$$\left(- \cos{\left(1 \right)} + \sin{\left(1 \right)}\right) e^{x}$$
=
=
                    x
(-cos(1) + sin(1))*e 
$$\left(- \cos{\left(1 \right)} + \sin{\left(1 \right)}\right) e^{x}$$
(-cos(1) + sin(1))*exp(x)

    Use the examples entering the upper and lower limits of integration.