Mister Exam

Other calculators

Integral of e^x*sin(y)-1 dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  / x           \   
 |  \E *sin(y) - 1/ dy
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \left(e^{x} \sin{\left(y \right)} - 1\right)\, dy$$
Integral(E^x*sin(y) - 1, (y, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                                       
 | / x           \                      x
 | \E *sin(y) - 1/ dy = C - y - cos(y)*e 
 |                                       
/                                        
$$\int \left(e^{x} \sin{\left(y \right)} - 1\right)\, dy = C - y - e^{x} \cos{\left(y \right)}$$
The answer [src]
             x    x
-1 - cos(1)*e  + e 
$$- e^{x} \cos{\left(1 \right)} + e^{x} - 1$$
=
=
             x    x
-1 - cos(1)*e  + e 
$$- e^{x} \cos{\left(1 \right)} + e^{x} - 1$$
-1 - cos(1)*exp(x) + exp(x)

    Use the examples entering the upper and lower limits of integration.