Mister Exam

Other calculators


e^x*sin(2*x)

Integral of e^x*sin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   x            
 |  e *sin(2*x) dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} e^{x} \sin{\left(2 x \right)}\, dx$$
Integral(E^x*sin(2*x), (x, 0, 1))
Detail solution
  1. Use integration by parts, noting that the integrand eventually repeats itself.

    1. For the integrand :

      Let and let .

      Then .

    2. For the integrand :

      Let and let .

      Then .

    3. Notice that the integrand has repeated itself, so move it to one side:

      Therefore,

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                
 |                                  x    x         
 |  x                   2*cos(2*x)*e    e *sin(2*x)
 | e *sin(2*x) dx = C - ------------- + -----------
 |                            5              5     
/                                                  
$${{e^{x}\,\left(\sin \left(2\,x\right)-2\,\cos \left(2\,x\right) \right)}\over{5}}$$
The graph
The answer [src]
2   2*e*cos(2)   e*sin(2)
- - ---------- + --------
5       5           5    
$${{e\,\sin 2-2\,e\,\cos 2}\over{5}}+{{2}\over{5}}$$
=
=
2   2*e*cos(2)   e*sin(2)
- - ---------- + --------
5       5           5    
$$\frac{2}{5} - \frac{2 e \cos{\left(2 \right)}}{5} + \frac{e \sin{\left(2 \right)}}{5}$$
Numerical answer [src]
1.34682708790369
1.34682708790369
The graph
Integral of e^x*sin(2*x) dx

    Use the examples entering the upper and lower limits of integration.