x / | | x | E *sin(n*x) dx | / 0
Integral(E^x*sin(n*x), (x, 0, x))
// / x x x\ \
|| |cosh(x)*e x*e *sinh(x) x*cosh(x)*e | |
||-I*|---------- + ------------ - ------------| for n = -I|
|| \ 2 2 2 / |
/ || |
| || / x x x\ |
| x || |cosh(x)*e x*e *sinh(x) x*cosh(x)*e | |
| E *sin(n*x) dx = C + |
x x
n e *sin(n*x) n*cos(n*x)*e
------ + ----------- - -------------
2 2 2
1 + n 1 + n 1 + n
=
x x
n e *sin(n*x) n*cos(n*x)*e
------ + ----------- - -------------
2 2 2
1 + n 1 + n 1 + n
n/(1 + n^2) + exp(x)*sin(n*x)/(1 + n^2) - n*cos(n*x)*exp(x)/(1 + n^2)
Use the examples entering the upper and lower limits of integration.