Integral of e^(x*(-2))*dx dx
The solution
Detail solution
-
Let u=(−2)x.
Then let du=−2dx and substitute −2du:
∫(−2eu)du
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: −2eu
Now substitute u back in:
−2e(−2)x
-
Now simplify:
−2e−2x
-
Add the constant of integration:
−2e−2x+constant
The answer is:
−2e−2x+constant
The answer (Indefinite)
[src]
/
| x*(-2)
| x*(-2) e
| E dx = C - -------
| 2
/
∫e(−2)xdx=C−2e(−2)x
The graph
21−2e21
=
21−2e21
Use the examples entering the upper and lower limits of integration.