Mister Exam

Other calculators


e^(x*(-2))*dx

Integral of e^(x*(-2))*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |   x*(-2)   
 |  E       dx
 |            
/             
0             
01e(2)xdx\int\limits_{0}^{1} e^{\left(-2\right) x}\, dx
Integral(E^(x*(-2)), (x, 0, 1))
Detail solution
  1. Let u=(2)xu = \left(-2\right) x.

    Then let du=2dxdu = - 2 dx and substitute du2- \frac{du}{2}:

    (eu2)du\int \left(- \frac{e^{u}}{2}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      False\text{False}

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: eu2- \frac{e^{u}}{2}

    Now substitute uu back in:

    e(2)x2- \frac{e^{\left(-2\right) x}}{2}

  2. Now simplify:

    e2x2- \frac{e^{- 2 x}}{2}

  3. Add the constant of integration:

    e2x2+constant- \frac{e^{- 2 x}}{2}+ \mathrm{constant}


The answer is:

e2x2+constant- \frac{e^{- 2 x}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                        
 |                   x*(-2)
 |  x*(-2)          e      
 | E       dx = C - -------
 |                     2   
/                          
e(2)xdx=Ce(2)x2\int e^{\left(-2\right) x}\, dx = C - \frac{e^{\left(-2\right) x}}{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
     -2
1   e  
- - ---
2    2 
1212e2\frac{1}{2} - \frac{1}{2 e^{2}}
=
=
     -2
1   e  
- - ---
2    2 
1212e2\frac{1}{2} - \frac{1}{2 e^{2}}
1/2 - exp(-2)/2
Numerical answer [src]
0.432332358381694
0.432332358381694
The graph
Integral of e^(x*(-2))*dx dx

    Use the examples entering the upper and lower limits of integration.