Integral of e^(2*x)*sin(2*x) dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4eusin(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2eusin(u)du=2∫eusin(u)du
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand eusin(u):
Let u(u)=sin(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−∫eucos(u)du.
-
For the integrand eucos(u):
Let u(u)=cos(u) and let dv(u)=eu.
Then ∫eusin(u)du=eusin(u)−eucos(u)+∫(−eusin(u))du.
-
Notice that the integrand has repeated itself, so move it to one side:
2∫eusin(u)du=eusin(u)−eucos(u)
Therefore,
∫eusin(u)du=2eusin(u)−2eucos(u)
So, the result is: 4eusin(u)−4eucos(u)
Now substitute u back in:
4e2xsin(2x)−4e2xcos(2x)
Method #2
-
Use integration by parts, noting that the integrand eventually repeats itself.
-
For the integrand e2xsin(2x):
Let u(x)=sin(2x) and let dv(x)=e2x.
Then ∫e2xsin(2x)dx=2e2xsin(2x)−∫e2xcos(2x)dx.
-
For the integrand e2xcos(2x):
Let u(x)=cos(2x) and let dv(x)=e2x.
Then ∫e2xsin(2x)dx=2e2xsin(2x)−2e2xcos(2x)+∫(−e2xsin(2x))dx.
-
Notice that the integrand has repeated itself, so move it to one side:
2∫e2xsin(2x)dx=2e2xsin(2x)−2e2xcos(2x)
Therefore,
∫e2xsin(2x)dx=4e2xsin(2x)−4e2xcos(2x)
-
Now simplify:
−42e2xcos(2x+4π)
-
Add the constant of integration:
−42e2xcos(2x+4π)+constant
The answer is:
−42e2xcos(2x+4π)+constant
The answer (Indefinite)
[src]
/
| 2*x 2*x
| 2*x cos(2*x)*e e *sin(2*x)
| e *sin(2*x) dx = C - ------------- + -------------
| 4 4
/
∫e2xsin(2x)dx=C+4e2xsin(2x)−4e2xcos(2x)
The graph
2 2
1 cos(2)*e e *sin(2)
- - --------- + ---------
4 4 4
41−4e2cos(2)+4e2sin(2)
=
2 2
1 cos(2)*e e *sin(2)
- - --------- + ---------
4 4 4
41−4e2cos(2)+4e2sin(2)
Use the examples entering the upper and lower limits of integration.