Mister Exam

Other calculators


e^(2*x)*sin(2*x)

Integral of e^(2*x)*sin(2*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |   2*x            
 |  e   *sin(2*x) dx
 |                  
/                   
0                   
01e2xsin(2x)dx\int\limits_{0}^{1} e^{2 x} \sin{\left(2 x \right)}\, dx
Integral(E^(2*x)*sin(2*x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=2xu = 2 x.

      Then let du=2dxdu = 2 dx and substitute du2\frac{du}{2}:

      eusin(u)4du\int \frac{e^{u} \sin{\left(u \right)}}{4}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        eusin(u)2du=eusin(u)du2\int \frac{e^{u} \sin{\left(u \right)}}{2}\, du = \frac{\int e^{u} \sin{\left(u \right)}\, du}{2}

        1. Use integration by parts, noting that the integrand eventually repeats itself.

          1. For the integrand eusin(u)e^{u} \sin{\left(u \right)}:

            Let u(u)=sin(u)u{\left(u \right)} = \sin{\left(u \right)} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then eusin(u)du=eusin(u)eucos(u)du\int e^{u} \sin{\left(u \right)}\, du = e^{u} \sin{\left(u \right)} - \int e^{u} \cos{\left(u \right)}\, du.

          2. For the integrand eucos(u)e^{u} \cos{\left(u \right)}:

            Let u(u)=cos(u)u{\left(u \right)} = \cos{\left(u \right)} and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

            Then eusin(u)du=eusin(u)eucos(u)+(eusin(u))du\int e^{u} \sin{\left(u \right)}\, du = e^{u} \sin{\left(u \right)} - e^{u} \cos{\left(u \right)} + \int \left(- e^{u} \sin{\left(u \right)}\right)\, du.

          3. Notice that the integrand has repeated itself, so move it to one side:

            2eusin(u)du=eusin(u)eucos(u)2 \int e^{u} \sin{\left(u \right)}\, du = e^{u} \sin{\left(u \right)} - e^{u} \cos{\left(u \right)}

            Therefore,

            eusin(u)du=eusin(u)2eucos(u)2\int e^{u} \sin{\left(u \right)}\, du = \frac{e^{u} \sin{\left(u \right)}}{2} - \frac{e^{u} \cos{\left(u \right)}}{2}

        So, the result is: eusin(u)4eucos(u)4\frac{e^{u} \sin{\left(u \right)}}{4} - \frac{e^{u} \cos{\left(u \right)}}{4}

      Now substitute uu back in:

      e2xsin(2x)4e2xcos(2x)4\frac{e^{2 x} \sin{\left(2 x \right)}}{4} - \frac{e^{2 x} \cos{\left(2 x \right)}}{4}

    Method #2

    1. Use integration by parts, noting that the integrand eventually repeats itself.

      1. For the integrand e2xsin(2x)e^{2 x} \sin{\left(2 x \right)}:

        Let u(x)=sin(2x)u{\left(x \right)} = \sin{\left(2 x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

        Then e2xsin(2x)dx=e2xsin(2x)2e2xcos(2x)dx\int e^{2 x} \sin{\left(2 x \right)}\, dx = \frac{e^{2 x} \sin{\left(2 x \right)}}{2} - \int e^{2 x} \cos{\left(2 x \right)}\, dx.

      2. For the integrand e2xcos(2x)e^{2 x} \cos{\left(2 x \right)}:

        Let u(x)=cos(2x)u{\left(x \right)} = \cos{\left(2 x \right)} and let dv(x)=e2x\operatorname{dv}{\left(x \right)} = e^{2 x}.

        Then e2xsin(2x)dx=e2xsin(2x)2e2xcos(2x)2+(e2xsin(2x))dx\int e^{2 x} \sin{\left(2 x \right)}\, dx = \frac{e^{2 x} \sin{\left(2 x \right)}}{2} - \frac{e^{2 x} \cos{\left(2 x \right)}}{2} + \int \left(- e^{2 x} \sin{\left(2 x \right)}\right)\, dx.

      3. Notice that the integrand has repeated itself, so move it to one side:

        2e2xsin(2x)dx=e2xsin(2x)2e2xcos(2x)22 \int e^{2 x} \sin{\left(2 x \right)}\, dx = \frac{e^{2 x} \sin{\left(2 x \right)}}{2} - \frac{e^{2 x} \cos{\left(2 x \right)}}{2}

        Therefore,

        e2xsin(2x)dx=e2xsin(2x)4e2xcos(2x)4\int e^{2 x} \sin{\left(2 x \right)}\, dx = \frac{e^{2 x} \sin{\left(2 x \right)}}{4} - \frac{e^{2 x} \cos{\left(2 x \right)}}{4}

  2. Now simplify:

    2e2xcos(2x+π4)4- \frac{\sqrt{2} e^{2 x} \cos{\left(2 x + \frac{\pi}{4} \right)}}{4}

  3. Add the constant of integration:

    2e2xcos(2x+π4)4+constant- \frac{\sqrt{2} e^{2 x} \cos{\left(2 x + \frac{\pi}{4} \right)}}{4}+ \mathrm{constant}


The answer is:

2e2xcos(2x+π4)4+constant- \frac{\sqrt{2} e^{2 x} \cos{\left(2 x + \frac{\pi}{4} \right)}}{4}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                    
 |                                  2*x    2*x         
 |  2*x                   cos(2*x)*e      e   *sin(2*x)
 | e   *sin(2*x) dx = C - ------------- + -------------
 |                              4               4      
/                                                      
e2xsin(2x)dx=C+e2xsin(2x)4e2xcos(2x)4\int e^{2 x} \sin{\left(2 x \right)}\, dx = C + \frac{e^{2 x} \sin{\left(2 x \right)}}{4} - \frac{e^{2 x} \cos{\left(2 x \right)}}{4}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
            2    2       
1   cos(2)*e    e *sin(2)
- - --------- + ---------
4       4           4    
14e2cos(2)4+e2sin(2)4\frac{1}{4} - \frac{e^{2} \cos{\left(2 \right)}}{4} + \frac{e^{2} \sin{\left(2 \right)}}{4}
=
=
            2    2       
1   cos(2)*e    e *sin(2)
- - --------- + ---------
4       4           4    
14e2cos(2)4+e2sin(2)4\frac{1}{4} - \frac{e^{2} \cos{\left(2 \right)}}{4} + \frac{e^{2} \sin{\left(2 \right)}}{4}
Numerical answer [src]
2.6984455045169
2.6984455045169
The graph
Integral of e^(2*x)*sin(2*x) dx

    Use the examples entering the upper and lower limits of integration.