Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^-4 Integral of x^-4
  • Integral of e^u Integral of e^u
  • Integral of ex Integral of ex
  • Integral of dx/x^3 Integral of dx/x^3
  • Identical expressions

  • e^(three *x)*log(x)/x
  • e to the power of (3 multiply by x) multiply by logarithm of (x) divide by x
  • e to the power of (three multiply by x) multiply by logarithm of (x) divide by x
  • e(3*x)*log(x)/x
  • e3*x*logx/x
  • e^(3x)log(x)/x
  • e(3x)log(x)/x
  • e3xlogx/x
  • e^3xlogx/x
  • e^(3*x)*log(x) divide by x
  • e^(3*x)*log(x)/xdx

Integral of e^(3*x)*log(x)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |   3*x          
 |  E   *log(x)   
 |  ----------- dx
 |       x        
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{e^{3 x} \log{\left(x \right)}}{x}\, dx$$
Integral((E^(3*x)*log(x))/x, (x, 0, 1))
The answer (Indefinite) [src]
                        //                                          2                                                _                                                                     \                 
                        ||                                       log (x)                                            |_  /1, 1, 1 |    \                                                    |                 
                        ||                                       ------- + EulerGamma*log(x) + log(3)*log(x) + 3*x* |   |        | 3*x|                                         for |x| < 1|                 
  /                     ||                                          2                                              3  3 \2, 2, 2 |    /                                                    |                 
 |                      ||                                                                                                                                                                 |                 
 |  3*x                 ||                            2                                                _                                                                                   |                 
 | E   *log(x)          ||                         log (x)                                            |_  /1, 1, 1 |    \                         /1\                                1     |                 
 | ----------- dx = C - |<                         ------- + EulerGamma*log(x) + log(3)*log(x) + 3*x* |   |        | 3*x| + pi*I*log(x) + pi*I*log|-|                           for --- < 1| + Ei(3*x)*log(x)
 |      x               ||                            2                                              3  3 \2, 2, 2 |    /                         \x/                               |x|    |                 
 |                      ||                                                                                                                                                                 |                 
/                       ||   2                                                _                                                                                                            |                 
                        ||log (x)                                            |_  /1, 1, 1 |    \                       __2, 0 /      1, 1 |  \         __0, 2 /1, 1       |  \             |                 
                        ||------- + EulerGamma*log(x) + log(3)*log(x) + 3*x* |   |        | 3*x| + pi*I*log(x) + pi*I*/__     |           | x| - pi*I*/__     |           | x|   otherwise |                 
                        ||   2                                              3  3 \2, 2, 2 |    /                      \_|2, 2 \0, 0       |  /        \_|2, 2 \      0, 0 |  /             |                 
                        \\                                                                                                                                                                 /                 
$$\int \frac{e^{3 x} \log{\left(x \right)}}{x}\, dx = C - \begin{cases} 3 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {3 x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(3 \right)} \log{\left(x \right)} & \text{for}\: \left|{x}\right| < 1 \\3 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {3 x} \right)} + i \pi \log{\left(\frac{1}{x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(3 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{for}\: \frac{1}{\left|{x}\right|} < 1 \\3 x {{}_{3}F_{3}\left(\begin{matrix} 1, 1, 1 \\ 2, 2, 2 \end{matrix}\middle| {3 x} \right)} + i \pi {G_{2, 2}^{2, 0}\left(\begin{matrix} & 1, 1 \\0, 0 & \end{matrix} \middle| {x} \right)} - i \pi {G_{2, 2}^{0, 2}\left(\begin{matrix} 1, 1 & \\ & 0, 0 \end{matrix} \middle| {x} \right)} + \frac{\log{\left(x \right)}^{2}}{2} + \gamma \log{\left(x \right)} + \log{\left(3 \right)} \log{\left(x \right)} + i \pi \log{\left(x \right)} & \text{otherwise} \end{cases} + \log{\left(x \right)} \operatorname{Ei}{\left(3 x \right)}$$
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
-976.921202751545
-976.921202751545

    Use the examples entering the upper and lower limits of integration.