Mister Exam

Other calculators

Integral of e^(3*x)*dy dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   3*x   
 |  E    dy
 |         
/          
0          
01e3xdy\int\limits_{0}^{1} e^{3 x}\, dy
Integral(E^(3*x), (y, 0, 1))
Detail solution
  1. The integral of a constant is the constant times the variable of integration:

    e3xdy=ye3x\int e^{3 x}\, dy = y e^{3 x}

  2. Add the constant of integration:

    ye3x+constanty e^{3 x}+ \mathrm{constant}


The answer is:

ye3x+constanty e^{3 x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                     
 |  3*x             3*x
 | E    dy = C + y*e   
 |                     
/                      
e3xdy=C+ye3x\int e^{3 x}\, dy = C + y e^{3 x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90040
The answer [src]
 3*x
e   
e3xe^{3 x}
=
=
 3*x
e   
e3xe^{3 x}
exp(3*x)

    Use the examples entering the upper and lower limits of integration.