Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/sqrt(1+u^2) Integral of 1/sqrt(1+u^2)
  • Integral of x*sin2x Integral of x*sin2x
  • Integral of (1/x^2)dx Integral of (1/x^2)dx
  • Integral of -x^3 Integral of -x^3
  • Identical expressions

  • (e^tg6x)/(cos6x)^ two
  • (e to the power of tg6x) divide by ( co sinus of e of 6x) squared
  • (e to the power of tg6x) divide by ( co sinus of e of 6x) to the power of two
  • (etg6x)/(cos6x)2
  • etg6x/cos6x2
  • (e^tg6x)/(cos6x)²
  • (e to the power of tg6x)/(cos6x) to the power of 2
  • e^tg6x/cos6x^2
  • (e^tg6x) divide by (cos6x)^2
  • (e^tg6x)/(cos6x)^2dx

Integral of (e^tg6x)/(cos6x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |   tan(6*x)   
 |  e           
 |  --------- dx
 |     2        
 |  cos (6*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{e^{\tan{\left(6 x \right)}}}{\cos^{2}{\left(6 x \right)}}\, dx$$
Integral(E^tan(6*x)/(cos(6*x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                     /            
 |                     |             
 |  tan(6*x)           |  tan(6*x)   
 | e                   | e           
 | --------- dx = C +  | --------- dx
 |    2                |    2        
 | cos (6*x)           | cos (6*x)   
 |                     |             
/                     /              
$${{e^{\tan \left(6\,x\right)}}\over{6}}$$
The answer [src]
  1             
  /             
 |              
 |   tan(6*x)   
 |  e           
 |  --------- dx
 |     2        
 |  cos (6*x)   
 |              
/               
0               
$${{e^{\tan 6}-1}\over{6}}$$
=
=
  1             
  /             
 |              
 |   tan(6*x)   
 |  e           
 |  --------- dx
 |     2        
 |  cos (6*x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{e^{\tan{\left(6 x \right)}}}{\cos^{2}{\left(6 x \right)}}\, dx$$
Numerical answer [src]
1.03663896684074e+31
1.03663896684074e+31

    Use the examples entering the upper and lower limits of integration.